Nano-biochar-based struvite with urea reduces ammonia emission and warming potential, promotes nitrogen utilization balance, and improves net ecosystem economic benefits of paddy fields
Yanqi Li , Xuanming Wang , Yu Guan , Qi Wu , Daocai Chi , Nanthi S. Bolan , Kadambot H.M. Siddique
{"title":"Nano-biochar-based struvite with urea reduces ammonia emission and warming potential, promotes nitrogen utilization balance, and improves net ecosystem economic benefits of paddy fields","authors":"Yanqi Li , Xuanming Wang , Yu Guan , Qi Wu , Daocai Chi , Nanthi S. Bolan , Kadambot H.M. Siddique","doi":"10.1016/j.fcr.2025.109872","DOIUrl":null,"url":null,"abstract":"<div><h3>Context or problem</h3><div>This study explores the development of an efficient, eco-friendly nano-biochar-based struvite (NBS) fertilizer by enhancing slow-release properties and nanocolloid content of biochar-based fertilizers through ultrasound-assisted magnesium modification.</div></div><div><h3>Objective or research question</h3><div>The NBS fertilizer is designed to partially replace urea at low doses, reducing the environmental impact of fast-release fertilizers while promoting nitrogen (N) balance in the soil–crop system.</div></div><div><h3>Methods</h3><div>A two-year field experiment was conducted to evaluate the effects of different NBS substitution rates (0 %: CF, 10 %: B<sub>1</sub>N<sub>9</sub>, 30 %: B<sub>3</sub>N<sub>7</sub>) on soil aggregate stability, ammonia (NH<sub>3</sub>) volatilization, warming potential, soil apparent N balance, crop N uptake, yield, and net ecosystem economic benefits (NEEB). The critical N concentration dilution curve model and N nutrition index (NNI) were used for assessment.</div></div><div><h3>Results</h3><div>The results showed that the treatments of replacing partial urea with NBS (BN treatments) significantly reduced cumulative NH<sub>3</sub> emissions by 19.64–35.20 %, lowering the warming potential by 14.85–31.93 kg CO<sub>2</sub>-eq ha<sup>–1</sup>. Floodwater NH<sub>4</sub><sup>+</sup>-N concentration played a stronger role in influencing NH<sub>3</sub> volatilization than floodwater pH. Increasing NBS application improved soil aggregate stability by enhancing the proportion of > 250 μm water-stable aggregates, thereby improving N retention. The BN treatments reduced soil apparent N loss by 21.32–41.84 %, and resulted in NNI values between 0.88 and 1.00, indicating balanced crop N utilization. Replacing 10 % urea with NBS (B<sub>1</sub>N<sub>9</sub>) led to displayed stronger N assimilation than the 30 % substitution (B<sub>3</sub>N<sub>7</sub>) under identical dry matter conditions. The B<sub>1</sub>N<sub>9</sub> treatment also increased yields by 15.02 %, and improved NEEB by 4.38 % (two-year average).</div></div><div><h3>Conclusions</h3><div>Based on these findings, we recommend applying NBS to replace 10 % of urea to enhance agricultural sustainability and profitability.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"326 ","pages":"Article 109872"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429025001376","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Context or problem
This study explores the development of an efficient, eco-friendly nano-biochar-based struvite (NBS) fertilizer by enhancing slow-release properties and nanocolloid content of biochar-based fertilizers through ultrasound-assisted magnesium modification.
Objective or research question
The NBS fertilizer is designed to partially replace urea at low doses, reducing the environmental impact of fast-release fertilizers while promoting nitrogen (N) balance in the soil–crop system.
Methods
A two-year field experiment was conducted to evaluate the effects of different NBS substitution rates (0 %: CF, 10 %: B1N9, 30 %: B3N7) on soil aggregate stability, ammonia (NH3) volatilization, warming potential, soil apparent N balance, crop N uptake, yield, and net ecosystem economic benefits (NEEB). The critical N concentration dilution curve model and N nutrition index (NNI) were used for assessment.
Results
The results showed that the treatments of replacing partial urea with NBS (BN treatments) significantly reduced cumulative NH3 emissions by 19.64–35.20 %, lowering the warming potential by 14.85–31.93 kg CO2-eq ha–1. Floodwater NH4+-N concentration played a stronger role in influencing NH3 volatilization than floodwater pH. Increasing NBS application improved soil aggregate stability by enhancing the proportion of > 250 μm water-stable aggregates, thereby improving N retention. The BN treatments reduced soil apparent N loss by 21.32–41.84 %, and resulted in NNI values between 0.88 and 1.00, indicating balanced crop N utilization. Replacing 10 % urea with NBS (B1N9) led to displayed stronger N assimilation than the 30 % substitution (B3N7) under identical dry matter conditions. The B1N9 treatment also increased yields by 15.02 %, and improved NEEB by 4.38 % (two-year average).
Conclusions
Based on these findings, we recommend applying NBS to replace 10 % of urea to enhance agricultural sustainability and profitability.
期刊介绍:
Field Crops Research is an international journal publishing scientific articles on:
√ experimental and modelling research at field, farm and landscape levels
on temperate and tropical crops and cropping systems,
with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.