Zeolite-Based Solid-State Electrolyte for Highly Stable Zinc Metal Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-03-25 DOI:10.1002/adfm.202503301
Fulong Li, Zhenye Kang, Lutong Shan, Shan Guo, Chuancong Zhou, Zaowen Zhao, Zhenyue Xing, Jing Li, Peng Rao, Xinlong Tian, Xiaodong Shi
{"title":"Zeolite-Based Solid-State Electrolyte for Highly Stable Zinc Metal Batteries","authors":"Fulong Li,&nbsp;Zhenye Kang,&nbsp;Lutong Shan,&nbsp;Shan Guo,&nbsp;Chuancong Zhou,&nbsp;Zaowen Zhao,&nbsp;Zhenyue Xing,&nbsp;Jing Li,&nbsp;Peng Rao,&nbsp;Xinlong Tian,&nbsp;Xiaodong Shi","doi":"10.1002/adfm.202503301","DOIUrl":null,"url":null,"abstract":"<p>Solid-state electrolytes are demonstrated great inhibition effect on cathodic dissolution and anodic side reactions in zinc-ion batteries. In this work, a novel zeolite-based solid electrolyte (Zeolite-Zn) enriched with zinc ions, high ionic conductivity (2.54 mS cm<sup>−1</sup>) and high Zn<sup>2+</sup> transference number (0.866) is prepared through ion-exchange strategy. Owing to the anhydrous characteristic, Zeolite-Zn electrolyte effectively extends the electrochemical window to 2.5 V and inhibits hydrogen evolution reaction. As for Zn||Zeolite-Zn||NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> batteries, high-capacity retention rate of 84.9% can be achieved after 1010 cycles at 0.5 A g<sup>−1</sup>. Even at high temperature of 60 °C, the NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> cathode is able to maintain high reversible capacity of 239.2 mAh g<sup>−1</sup> after 110 cycles, which can be attributed to the superior structural stability, weak interfacial side reaction, low zinc migration barrier, and inhibited vanadium dissolution of Zeolite-Zn electrolyte. In addition, the as-fabricated Zn||Zeolite-Zn||AC@I<sub>2</sub> batteries have also demonstrated brilliant performances, suggesting its promising potential in practical application of zinc-based secondary batteries. This study provides mechanistic insights and structural inspiration for the original design of inorganic solid electrolytes.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 35","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202503301","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state electrolytes are demonstrated great inhibition effect on cathodic dissolution and anodic side reactions in zinc-ion batteries. In this work, a novel zeolite-based solid electrolyte (Zeolite-Zn) enriched with zinc ions, high ionic conductivity (2.54 mS cm−1) and high Zn2+ transference number (0.866) is prepared through ion-exchange strategy. Owing to the anhydrous characteristic, Zeolite-Zn electrolyte effectively extends the electrochemical window to 2.5 V and inhibits hydrogen evolution reaction. As for Zn||Zeolite-Zn||NH4V4O10 batteries, high-capacity retention rate of 84.9% can be achieved after 1010 cycles at 0.5 A g−1. Even at high temperature of 60 °C, the NH4V4O10 cathode is able to maintain high reversible capacity of 239.2 mAh g−1 after 110 cycles, which can be attributed to the superior structural stability, weak interfacial side reaction, low zinc migration barrier, and inhibited vanadium dissolution of Zeolite-Zn electrolyte. In addition, the as-fabricated Zn||Zeolite-Zn||AC@I2 batteries have also demonstrated brilliant performances, suggesting its promising potential in practical application of zinc-based secondary batteries. This study provides mechanistic insights and structural inspiration for the original design of inorganic solid electrolytes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高稳定性锌金属电池的沸石基固态电解质
固态电解质对锌离子电池的阴极溶解和阳极副反应有明显的抑制作用。本文通过离子交换策略制备了一种富含锌离子、高离子电导率(2.54 mS cm−1)和高Zn2+转移数(0.866)的新型沸石基固体电解质(zeolte - zn)。由于无水特性,沸石锌电解质有效地将电化学窗口扩展到2.5 V,抑制析氢反应。对于Zn||沸石-Zn||NH4V4O10电池,在0.5 A g−1条件下循环1010次后,容量保持率高达84.9%。NH4V4O10阴极在60℃高温下,循环110次后仍能保持239.2 mAh g−1的高可逆容量,这是由于其结构稳定性好,界面副反应弱,锌迁移势垒低,抑制了钒在沸石-锌电解质中的溶解。此外,制备的Zn||沸石-Zn||AC@I2电池也表现出了优异的性能,表明其在锌基二次电池的实际应用潜力巨大。该研究为无机固体电解质的原始设计提供了机理见解和结构灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Stabilizing Spent LiCoO 2 Through Interface Construction: A Sustainable Route to High‐Performance Cathode Regeneration Polymorph with Triphase Heterojunctions Enhancing Interfacial Stability for Long-Lasting Quasi-Solid-State Lithium Metal Batteries Conductive MOF-Based NiZn Dual Atom Catalyst for Boosted Photoreduction of Diluted CO2: The Effects of Inert Sites Robust and Conductive Polymer Electrolytes via Solvent-Guided Hierarchical Network Formation Uniform SEI design via Solvent Competitions for Stable Anode-Free Zinc Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1