Detection of CO2 Locally Generated by Formate Dehydrogenase Using Carbonate Ion-Selective Micropipette Electrodes

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-25 DOI:10.1021/acsnano.5c00387
Seol Baek, Salvador Gutierrez-Portocarrero, Rokas Gerulskis, Shelley D. Minteer, Sean R. German, Henry S. White
{"title":"Detection of CO2 Locally Generated by Formate Dehydrogenase Using Carbonate Ion-Selective Micropipette Electrodes","authors":"Seol Baek, Salvador Gutierrez-Portocarrero, Rokas Gerulskis, Shelley D. Minteer, Sean R. German, Henry S. White","doi":"10.1021/acsnano.5c00387","DOIUrl":null,"url":null,"abstract":"Many technologies involve immobilizing catalysts such as enzymes on surfaces, and the catalytic activities or functional efficiencies of these surface-bound catalysts can vary depending on orientations, localized binding sites, active sites, and intrinsic molecular nature. Accurate and rapid quantification of reaction products from surface-immobilized catalysts is crucial for understanding the selectivity, mechanisms, and reaction dynamics of catalytic systems and for revealing heterogeneous catalytic activities and reaction sites for applications such as biosensors and energy conversion/generation systems. Here, we demonstrate the feasibility of localized enzymatic activity measurements using microscale carbon dioxide (CO<sub>2</sub>)-sensitive ion-selective electrode (ISE) pipettes (0.5–2.5 μm tip radius) as a probe, with in situ potentiometric scanning electrochemical microscopy (SECM). We develop carbonate (CO<sub>3</sub><sup>2–</sup>) ionophore-incorporated ISEs exhibiting a Nernstian response (26.7 mV/decade) with a detection limit of 1.72 μM and explore surface-immobilized formate dehydrogenase (FDH) activity by detecting CO<sub>2</sub> generated by the enzymatic reaction via potentiometric measurements. SECM is used for real-time spatial/temporal investigation of FDH immobilized onto the surface at a micrometer-scale resolution. Moreover, unlike voltammetric techniques based on faradaic reactions, the potentiometric measurements using ISEs allow highly sensitive and selective detection of CO<sub>3</sub><sup>2–</sup>, rendering efficient quantification of CO<sub>2</sub> without interference from solution composition changes arising from faradaic processes. The total amount of CO<sub>2</sub> generated at an FDH-immobilized Au ultramicroelectrode is quantified as a function of coenzyme, i.e., NAD<sup>+</sup>, and substrate, i.e., formate, concentrations both in constant tip–sample distance mode and variable depth mode. Finally, we demonstrate the use of the ISE to quantify CO<sub>2</sub> levels in blood serum.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"33 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00387","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Many technologies involve immobilizing catalysts such as enzymes on surfaces, and the catalytic activities or functional efficiencies of these surface-bound catalysts can vary depending on orientations, localized binding sites, active sites, and intrinsic molecular nature. Accurate and rapid quantification of reaction products from surface-immobilized catalysts is crucial for understanding the selectivity, mechanisms, and reaction dynamics of catalytic systems and for revealing heterogeneous catalytic activities and reaction sites for applications such as biosensors and energy conversion/generation systems. Here, we demonstrate the feasibility of localized enzymatic activity measurements using microscale carbon dioxide (CO2)-sensitive ion-selective electrode (ISE) pipettes (0.5–2.5 μm tip radius) as a probe, with in situ potentiometric scanning electrochemical microscopy (SECM). We develop carbonate (CO32–) ionophore-incorporated ISEs exhibiting a Nernstian response (26.7 mV/decade) with a detection limit of 1.72 μM and explore surface-immobilized formate dehydrogenase (FDH) activity by detecting CO2 generated by the enzymatic reaction via potentiometric measurements. SECM is used for real-time spatial/temporal investigation of FDH immobilized onto the surface at a micrometer-scale resolution. Moreover, unlike voltammetric techniques based on faradaic reactions, the potentiometric measurements using ISEs allow highly sensitive and selective detection of CO32–, rendering efficient quantification of CO2 without interference from solution composition changes arising from faradaic processes. The total amount of CO2 generated at an FDH-immobilized Au ultramicroelectrode is quantified as a function of coenzyme, i.e., NAD+, and substrate, i.e., formate, concentrations both in constant tip–sample distance mode and variable depth mode. Finally, we demonstrate the use of the ISE to quantify CO2 levels in blood serum.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用碳酸盐离子选择微管电极检测甲酸脱氢酶局部生成的CO2
许多技术涉及将催化剂(如酶)固定在表面上,这些表面结合催化剂的催化活性或功能效率可能取决于取向、局部结合位点、活性位点和内在分子性质。准确、快速地定量表面固定化催化剂的反应产物对于理解催化系统的选择性、机理和反应动力学以及揭示非均相催化活性和反应位点等应用至关重要,如生物传感器和能量转换/生成系统。在这里,我们证明了使用微尺度二氧化碳(CO2)敏感离子选择电极(ISE)移液器(针尖半径0.5-2.5 μm)作为探针,使用原位电位扫描电化学显微镜(SECM)进行局部酶活性测量的可行性。我们开发了具有Nernstian响应(26.7 mV/decade),检测限为1.72 μM的碳酸盐(CO32 -)离子载体的ise,并通过电位测量法检测酶促反应产生的CO2来探索表面固定化甲酸脱氢酶(FDH)的活性。SECM用于在微米尺度分辨率下对固定在表面上的FDH进行实时时空调查。此外,与基于法拉第反应的伏安技术不同,使用ISEs的电位测量允许对CO32 -进行高灵敏度和选择性的检测,从而实现CO2的有效定量,而不会受到法拉第过程引起的溶液组成变化的干扰。在恒定尖端样品距离模式和变深度模式下,fdh固定的Au超微电极产生的CO2总量被量化为辅酶(即NAD+)和底物(即甲酸盐)浓度的函数。最后,我们演示了使用ISE来量化血清中的二氧化碳水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Charge Transfer between Quantum Dots and Redox Molecules Is Not Auger-Assisted Design Principles of Oral Nanomedicines to Overcome the Delivery Barriers An Ultrasonic Probe-Fabricated Nanocapsule for Cytomembrane-Anchoring Photodynamic Therapy and In Situ Tumor Vaccine Self-Induced Buckling in Hollow Microgels Highly Active Strontium Peroxide Nanoparticles Induce Alkalization/Oxidation to Potentiate Cancer Immuno-Metabolic Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1