Tough MXene-Cellulose Nanofibril Ionotronic Dual-Network Hydrogel Films for Stable Zinc Anodes

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-25 DOI:10.1021/acsnano.5c01497
Mengyu Liu, Liming Zhang, Jowan Rostami, Teng Zhang, Kyle Matthews, Sheng Chen, Wenjie Fan, Yue Zhu, Jingwei Chen, Minghua Huang, Jingyi Wu, Huanlei Wang, Mahiar Max Hamedi, Feng Xu, Weiqian Tian, Lars Wågberg, Yury Gogotsi
{"title":"Tough MXene-Cellulose Nanofibril Ionotronic Dual-Network Hydrogel Films for Stable Zinc Anodes","authors":"Mengyu Liu, Liming Zhang, Jowan Rostami, Teng Zhang, Kyle Matthews, Sheng Chen, Wenjie Fan, Yue Zhu, Jingwei Chen, Minghua Huang, Jingyi Wu, Huanlei Wang, Mahiar Max Hamedi, Feng Xu, Weiqian Tian, Lars Wågberg, Yury Gogotsi","doi":"10.1021/acsnano.5c01497","DOIUrl":null,"url":null,"abstract":"Developing ionotronic interface layers for zinc anodes with superior mechanical integrity is one of the efficient strategies to suppress the growth of zinc dendrites in favor of the cycling stability of aqueous zinc-ion batteries (AZIBs). Herein, we assembled robust 2D MXene-based hydrogel films cross-linked by 1D cellulose nanofibril (CNF) dual networks, acting as interface layers to stabilize Zn anodes. The MXene-CNF hydrogel films integrated multifunctionalities, including a high in-plane toughness of 18.39 MJ m<sup>–3</sup>, high in-plane/out-of-plane elastic modulus of 0.85 and 3.65 GPa, mixed electronic/ionic (ionotronic) conductivity of 1.53 S cm<sup>–1</sup> and 0.52 mS cm<sup>–1</sup>, and high zincophilicity with a high binding energy (1.33 eV) and low migration energy barrier (0.24 eV) for Zn<sup>2+</sup>. These integrated multifunctionalities, endowed with coupled multifield effects, including strong stress confinement and uniform ionic/electronic field distributions on Zn anodes, effectively suppressed dendrite growth, as proven by experiments and simulations. An example of the MXene-CNF|Zn showed a reduced nucleation overpotential of 19 mV, an extended cycling life of over 2700 h in Zn||Zn cells, and a high capacity of 323 mAh g<sup>–1</sup> in Zn||MnO<sub>2</sub> cells, compared with bare Zn. This work offers an approach for exploring mechanically robust 1D/2D ionotronic hydrogel interface layers to stabilize the Zn anodes of AZIBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"102 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c01497","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing ionotronic interface layers for zinc anodes with superior mechanical integrity is one of the efficient strategies to suppress the growth of zinc dendrites in favor of the cycling stability of aqueous zinc-ion batteries (AZIBs). Herein, we assembled robust 2D MXene-based hydrogel films cross-linked by 1D cellulose nanofibril (CNF) dual networks, acting as interface layers to stabilize Zn anodes. The MXene-CNF hydrogel films integrated multifunctionalities, including a high in-plane toughness of 18.39 MJ m–3, high in-plane/out-of-plane elastic modulus of 0.85 and 3.65 GPa, mixed electronic/ionic (ionotronic) conductivity of 1.53 S cm–1 and 0.52 mS cm–1, and high zincophilicity with a high binding energy (1.33 eV) and low migration energy barrier (0.24 eV) for Zn2+. These integrated multifunctionalities, endowed with coupled multifield effects, including strong stress confinement and uniform ionic/electronic field distributions on Zn anodes, effectively suppressed dendrite growth, as proven by experiments and simulations. An example of the MXene-CNF|Zn showed a reduced nucleation overpotential of 19 mV, an extended cycling life of over 2700 h in Zn||Zn cells, and a high capacity of 323 mAh g–1 in Zn||MnO2 cells, compared with bare Zn. This work offers an approach for exploring mechanically robust 1D/2D ionotronic hydrogel interface layers to stabilize the Zn anodes of AZIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
坚韧的mxene -纤维素纳米纤维离子电子双网络水凝胶膜用于稳定的锌阳极
为锌阳极开发具有良好机械完整性的离子电子界面层是抑制锌枝晶生长、提高锌离子电池循环稳定性的有效策略之一。在这里,我们组装了坚固的二维mxene基水凝胶膜,由1D纤维素纳米纤维(CNF)双网络交联,作为界面层来稳定Zn阳极。MXene-CNF水凝胶膜具有多种功能,包括18.39 MJ - m-3的高面内韧性,0.85和3.65 GPa的面内/面外弹性模量,1.53 S cm-1和0.52 mS cm-1的混合电子/离子(离子电子)电导率,以及Zn2+具有高结合能(1.33 eV)和低迁移能垒(0.24 eV)的高亲锌性。实验和模拟结果表明,这些集成的多功能材料具有耦合的多场效应,包括强应力约束和均匀的离子/电场分布在Zn阳极上,有效地抑制了枝晶的生长。以MXene-CNF|锌为例,与裸锌相比,其成核过电位降低了19 mV,在Zn||锌电池中循环寿命延长了2700 h以上,在Zn||MnO2电池中具有323 mAh g-1的高容量。这项工作为探索机械坚固的1D/2D离子电子水凝胶界面层提供了一种方法,以稳定azib的Zn阳极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Charge Transfer between Quantum Dots and Redox Molecules Is Not Auger-Assisted Design Principles of Oral Nanomedicines to Overcome the Delivery Barriers An Ultrasonic Probe-Fabricated Nanocapsule for Cytomembrane-Anchoring Photodynamic Therapy and In Situ Tumor Vaccine Self-Induced Buckling in Hollow Microgels Highly Active Strontium Peroxide Nanoparticles Induce Alkalization/Oxidation to Potentiate Cancer Immuno-Metabolic Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1