Integrating plasmon and vacancies over oxide perovskite for synergistic CO2 methanation

IF 17.1 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2025-03-24 DOI:10.1016/j.nanoen.2025.110917
Shuwen Cheng , Zhehao Sun , Kang Hui Lim , Claudia Li , Martyna Judd , Nicholas Cox , Rosalie Hocking , Ying Liu , Xuechen Jing , Xiaozhou Liao , Guohua Jia , Sibudjing Kawi , Zongyou Yin
{"title":"Integrating plasmon and vacancies over oxide perovskite for synergistic CO2 methanation","authors":"Shuwen Cheng ,&nbsp;Zhehao Sun ,&nbsp;Kang Hui Lim ,&nbsp;Claudia Li ,&nbsp;Martyna Judd ,&nbsp;Nicholas Cox ,&nbsp;Rosalie Hocking ,&nbsp;Ying Liu ,&nbsp;Xuechen Jing ,&nbsp;Xiaozhou Liao ,&nbsp;Guohua Jia ,&nbsp;Sibudjing Kawi ,&nbsp;Zongyou Yin","doi":"10.1016/j.nanoen.2025.110917","DOIUrl":null,"url":null,"abstract":"<div><div>The photocatalytic reduction of CO<sub>2</sub> to CH<sub>4</sub> offers a promising path for sustainable energy conversion, but its complexity, requiring an eight-electron transfer, poses significant challenges. This study presents a novel method to enhance the activity and selectivity of this reaction using Ag nanoparticles as cocatalysts on a mesoporous perovskite semiconductor, NiTiO<sub>3</sub>. By leveraging the synergistic effects of localized surface plasmon resonance (LSPR) and strategically engineered vacancies, the Ag-NiTiO3 catalyst achieves a 15-fold increase in CH<sub>4</sub> production and near-perfect selectivity, up from 92.4 % in pristine NiTiO<sub>3</sub>. Advanced simulations, including finite-difference time-domain (FDTD) and density functional theory (DFT), highlight the crucial role of LSPR-induced local electric fields and vacancies in enhancing methane selectivity. The integration of Ag nanoparticles into the NiTiO<sub>3</sub> matrix not only facilitates efficient electron-hole separation but also promotes the formation of vacancies essential for the CO<sub>2</sub> to CH<sub>4</sub> conversion. This work offers profound insights into the interaction between light, plasmonic materials, and semiconductor properties, providing a robust platform for optimizing photocatalytic performance. These findings advance our understanding of photocatalytic CO<sub>2</sub> reduction mechanisms, paving the way for designing more efficient and selective photocatalysts, contributing to broader CO<sub>2</sub> utilization strategies and addressing global carbon emissions and energy challenges.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"139 ","pages":"Article 110917"},"PeriodicalIF":17.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525002769","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The photocatalytic reduction of CO2 to CH4 offers a promising path for sustainable energy conversion, but its complexity, requiring an eight-electron transfer, poses significant challenges. This study presents a novel method to enhance the activity and selectivity of this reaction using Ag nanoparticles as cocatalysts on a mesoporous perovskite semiconductor, NiTiO3. By leveraging the synergistic effects of localized surface plasmon resonance (LSPR) and strategically engineered vacancies, the Ag-NiTiO3 catalyst achieves a 15-fold increase in CH4 production and near-perfect selectivity, up from 92.4 % in pristine NiTiO3. Advanced simulations, including finite-difference time-domain (FDTD) and density functional theory (DFT), highlight the crucial role of LSPR-induced local electric fields and vacancies in enhancing methane selectivity. The integration of Ag nanoparticles into the NiTiO3 matrix not only facilitates efficient electron-hole separation but also promotes the formation of vacancies essential for the CO2 to CH4 conversion. This work offers profound insights into the interaction between light, plasmonic materials, and semiconductor properties, providing a robust platform for optimizing photocatalytic performance. These findings advance our understanding of photocatalytic CO2 reduction mechanisms, paving the way for designing more efficient and selective photocatalysts, contributing to broader CO2 utilization strategies and addressing global carbon emissions and energy challenges.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将等离子体和空位整合到氧化物包晶上,实现协同二氧化碳甲烷化
光催化将CO2还原为CH4为可持续能源转换提供了一条很有前途的途径,但其复杂性(需要8个电子转移)带来了重大挑战。本研究提出了一种在介孔钙钛矿半导体NiTiO3上使用银纳米粒子作为助催化剂来提高反应活性和选择性的新方法。通过利用局部表面等离子体共振(LSPR)和战略性设计的空位的协同效应,Ag-NiTiO3催化剂的CH4产量增加了15倍,选择性接近完美,高于原始NiTiO3的92.4%。先进的模拟,包括时域有限差分(FDTD)和密度泛函理论(DFT),强调了lspr诱导的局部电场和空位在提高甲烷选择性方面的关键作用。将Ag纳米颗粒整合到NiTiO3基体中,不仅促进了电子空穴的高效分离,而且促进了CO2到CH4转化所必需的空位的形成。这项工作为光、等离子体材料和半导体特性之间的相互作用提供了深刻的见解,为优化光催化性能提供了一个强大的平台。这些发现促进了我们对光催化二氧化碳还原机制的理解,为设计更高效、更有选择性的光催化剂铺平了道路,为更广泛的二氧化碳利用策略和解决全球碳排放和能源挑战做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Self-Powered MXene-PVDF Sensors: Highly Sensitive, LSTM-Aided for Production-Line Human-Machine Interaction Crystal Facet-Dependent Selectivity for Ammonia Formation on TiO2 Anatase Surfaces in Photocatalytic Nitrate Reduction Reaction Triboelectric nanogenerators for civil infrastructure towards sustainability and intelligence Hollow Co/CoS2@NC with Gd-Induced Valence Electron Perturbation for Efficient Zinc-Air Battery Performance Water-resistant hybrid perovskite solar cell - drop triboelectric energy harvester
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1