Carbon nanotube-nano-Fe3O4 composite graphene hydrogel with optimized 3D structure for high-performance solar evaporation

IF 9.8 1区 工程技术 Q1 ENGINEERING, CHEMICAL Desalination Pub Date : 2025-03-24 DOI:10.1016/j.desal.2025.118840
Yueyue Jiang , Yu Gong , Chunwen Guo, Xu Xiang
{"title":"Carbon nanotube-nano-Fe3O4 composite graphene hydrogel with optimized 3D structure for high-performance solar evaporation","authors":"Yueyue Jiang ,&nbsp;Yu Gong ,&nbsp;Chunwen Guo,&nbsp;Xu Xiang","doi":"10.1016/j.desal.2025.118840","DOIUrl":null,"url":null,"abstract":"<div><div>In the face of increasingly scarce freshwater resources, harnessing sustainable solar energy for water evaporation offers an effective pathway to alleviate the water crisis. In this study, we prepared a highly efficient hydrogel solar evaporator (GHCFeP) using graphene oxide (GO), carbon nanotubes (CNTs), nano-Fe<sub>3</sub>O<sub>4</sub>, and polyvinyl alcohol (PVA) as raw materials. The combination of CNTs' excellent molecular thermal vibration effect and nano-Fe<sub>3</sub>O<sub>4</sub>'s superior light absorption and photothermal conversion mechanism endows the composite hydrogel with better photothermal conversion capabilities. Meanwhile, the introduction of PVA enhances the water transport capacity within the hydrogel. Furthermore, this work optimizes the three-dimensional (3D) structure of the hydrogel, reducing the “dead evaporation zone” on the evaporator's surface and enhancing the hydrogel's evaporation rate. Due to GHCFeP's low evaporation enthalpy (1377 kJ/kg), under 1.0 sun illumination, its evaporation rate reaches 2.133 ± 0.166 kg·m<sup>−2</sup>·h<sup>−1</sup> in pure water and 1.778 ± 0.181 kg·m<sup>−2</sup>·h<sup>−1</sup> in simulated seawater. Additionally, by shaping the evaporator into a honeycomb-like structure, the evaporation rate of GHCFeP is further improved. The honeycomb-shaped GHCFeP exhibits an evaporation rate of 2.304 ± 0.042 kg·m<sup>−2</sup>·h<sup>−1</sup> in pure water with a photothermal conversion efficiency of 92.4 %, and an evaporation rate of 2.045 ± 0.050 kg·m<sup>−2</sup>·h<sup>−1</sup> in simulated seawater. In summary, this work not only develops an efficient solar evaporator but also achieves higher photothermal conversion efficiency through optimized 3D structuring, providing new insights and strategies for related research.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"608 ","pages":"Article 118840"},"PeriodicalIF":9.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916425003157","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the face of increasingly scarce freshwater resources, harnessing sustainable solar energy for water evaporation offers an effective pathway to alleviate the water crisis. In this study, we prepared a highly efficient hydrogel solar evaporator (GHCFeP) using graphene oxide (GO), carbon nanotubes (CNTs), nano-Fe3O4, and polyvinyl alcohol (PVA) as raw materials. The combination of CNTs' excellent molecular thermal vibration effect and nano-Fe3O4's superior light absorption and photothermal conversion mechanism endows the composite hydrogel with better photothermal conversion capabilities. Meanwhile, the introduction of PVA enhances the water transport capacity within the hydrogel. Furthermore, this work optimizes the three-dimensional (3D) structure of the hydrogel, reducing the “dead evaporation zone” on the evaporator's surface and enhancing the hydrogel's evaporation rate. Due to GHCFeP's low evaporation enthalpy (1377 kJ/kg), under 1.0 sun illumination, its evaporation rate reaches 2.133 ± 0.166 kg·m−2·h−1 in pure water and 1.778 ± 0.181 kg·m−2·h−1 in simulated seawater. Additionally, by shaping the evaporator into a honeycomb-like structure, the evaporation rate of GHCFeP is further improved. The honeycomb-shaped GHCFeP exhibits an evaporation rate of 2.304 ± 0.042 kg·m−2·h−1 in pure water with a photothermal conversion efficiency of 92.4 %, and an evaporation rate of 2.045 ± 0.050 kg·m−2·h−1 in simulated seawater. In summary, this work not only develops an efficient solar evaporator but also achieves higher photothermal conversion efficiency through optimized 3D structuring, providing new insights and strategies for related research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化三维结构的碳纳米管-纳米fe3o4复合石墨烯水凝胶用于高性能太阳能蒸发
面对日益稀缺的淡水资源,利用可持续的太阳能蒸发水是缓解水危机的有效途径。在本研究中,我们以氧化石墨烯(GO)、碳纳米管(CNTs)、纳米fe3o4和聚乙烯醇(PVA)为原料制备了高效水凝胶太阳能蒸化器(GHCFeP)。CNTs优异的分子热振动效应与纳米fe3o4优越的光吸收和光热转化机制相结合,使复合水凝胶具有更好的光热转化能力。同时,PVA的引入提高了水凝胶内部的输水能力。进一步优化了水凝胶的三维结构,减少了蒸发器表面的“死蒸发区”,提高了水凝胶的蒸发速率。由于GHCFeP的蒸发焓较低(1377 kJ/kg),在1.0太阳照度下,其在纯水中的蒸发速率为2.133±0.166 kg·m−2·h−1,在模拟海水中的蒸发速率为1.778±0.181 kg·m−2·h−1。此外,通过将蒸发器塑造成蜂窝状结构,进一步提高了GHCFeP的蒸发速率。蜂窝状GHCFeP在纯水中的蒸发速率为2.304±0.042 kg·m−2·h−1,光热转换效率为92.4%,在模拟海水中的蒸发速率为2.045±0.050 kg·m−2·h−1。综上所述,本工作不仅开发了高效的太阳能蒸发器,而且通过优化的三维结构实现了更高的光热转换效率,为相关研究提供了新的见解和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
期刊最新文献
Editorial Board High-performance fiber-based aerogel evaporator for solar desalination and wastewater purification Trunk-inspired core–skin solar evaporator with biomimetic hierarchical porosity for spontaneous salt rejection Efficient lithium extraction from seawater by electrodialysis with a flexible LATP/PVDF membrane Pore engineering of carboxyl-functionalized covalent organic framework for uranium extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1