Microbubble synthesis of hybridised bacterial cellulose–gelatin separators for multifunctional supercapacitors†

IF 4.1 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2025-02-14 DOI:10.1039/D4SE01684J
Surachai Chaichana, Pawin Iamprasertkun, Montree Sawangphruk, Noelia Rubio and Pichamon Sirisinudomkit
{"title":"Microbubble synthesis of hybridised bacterial cellulose–gelatin separators for multifunctional supercapacitors†","authors":"Surachai Chaichana, Pawin Iamprasertkun, Montree Sawangphruk, Noelia Rubio and Pichamon Sirisinudomkit","doi":"10.1039/D4SE01684J","DOIUrl":null,"url":null,"abstract":"<p >Separators are known to be a mandatory component due to their crucial function in preventing short circuits between positive and negative electrodes, ensuring the safety and cycle life of energy storage devices. However, in practice, separators are a crucial component that affects cell electrochemical performance, especially rate capability and power density, which have been addressed in only a few research studies. To further investigate this topic, this study introduces durable and eco-friendly separators synthesised by hybridising bacterial cellulose (BC) and gelatin through a facile, cost-effective, desirable and environmentally friendly microbubble process. The as-fabricated symmetric supercapacitor with an as-synthesised separator, prepared under optimal conditions of 2 g per mL BC with 1.5 wt% gelatin and a microbubble rate of 200 CC per min (designated as 2BC1.5GT_R200), reduces cell resistance and optimises ion transport within the cell compared to as-fabricated symmetric supercapacitors using BC, hybridised BC–gelatin under other conditions, conventional cellulose and commercial separators. Additionally, symmetric devices with 2BC1.5GT_R200 separators achieve excellent capacitance retention across a wide range of electrolyte environments, including acidic (1 M H<small><sub>2</sub></small>SO<small><sub>4</sub></small>), basic (1 M KOH), and neutral (1 M NaNO<small><sub>3</sub></small>) solutions, retaining over 91%, 87%, and 82% of their initial capacitance after 10 000 cycles, respectively. These data demonstrate that the microbubble synthesis process combined with gelatin hybridisation can maximise electrochemical performance, maintain high cell efficiency, and enable operation in diverse electrolytes, presenting a promising route for developing innovative separators for energy storage applications.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 7","pages":" 1745-1754"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01684j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Separators are known to be a mandatory component due to their crucial function in preventing short circuits between positive and negative electrodes, ensuring the safety and cycle life of energy storage devices. However, in practice, separators are a crucial component that affects cell electrochemical performance, especially rate capability and power density, which have been addressed in only a few research studies. To further investigate this topic, this study introduces durable and eco-friendly separators synthesised by hybridising bacterial cellulose (BC) and gelatin through a facile, cost-effective, desirable and environmentally friendly microbubble process. The as-fabricated symmetric supercapacitor with an as-synthesised separator, prepared under optimal conditions of 2 g per mL BC with 1.5 wt% gelatin and a microbubble rate of 200 CC per min (designated as 2BC1.5GT_R200), reduces cell resistance and optimises ion transport within the cell compared to as-fabricated symmetric supercapacitors using BC, hybridised BC–gelatin under other conditions, conventional cellulose and commercial separators. Additionally, symmetric devices with 2BC1.5GT_R200 separators achieve excellent capacitance retention across a wide range of electrolyte environments, including acidic (1 M H2SO4), basic (1 M KOH), and neutral (1 M NaNO3) solutions, retaining over 91%, 87%, and 82% of their initial capacitance after 10 000 cycles, respectively. These data demonstrate that the microbubble synthesis process combined with gelatin hybridisation can maximise electrochemical performance, maintain high cell efficiency, and enable operation in diverse electrolytes, presenting a promising route for developing innovative separators for energy storage applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多功能超级电容器用杂化细菌纤维素-明胶分离器的微泡合成
由于隔膜在防止正负极之间短路,确保储能装置的安全性和循环寿命方面具有重要作用,因此被认为是必不可少的部件。然而,在实践中,分离器是影响电池电化学性能的关键部件,特别是速率能力和功率密度,只有少数研究解决了这些问题。为了进一步研究这一主题,本研究通过简单、经济、理想和环保的微泡工艺,将细菌纤维素(BC)和明胶混合合成耐用且环保的分离器。与使用BC、在其他条件下混合BC -明胶、常规纤维素和商用分离器的对称超级电容器相比,在最佳条件下制备的对称超级电容器与合成分离器在最佳条件下制备2 g / mL BC和1.5 wt%明胶和200 CC / min的微泡速率(指定为2BC1.5GT_R200),降低了细胞阻力并优化了细胞内的离子运输。此外,具有2BC1.5GT_R200隔膜的对称器件在广泛的电解质环境中实现了出色的电容保持,包括酸性(1 M H2SO4),碱性(1 M KOH)和中性(1 M NaNO3)溶液,在10,000次循环后分别保持超过91%,87%和82%的初始电容。这些数据表明,微泡合成过程结合明胶杂交可以最大限度地提高电化学性能,保持高电池效率,并能够在多种电解质中运行,为开发用于储能应用的创新分离器提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
A new chapter for Sustainable Energy & Fuels Synergistic stabilization of lead halide perovskites by univalent cations under electric field stress Electrolyte additives in Li-ion batteries: from mechanisms to application Optimizing π-conjugated system of spiro-based HTMs; structures and concept towards boosting efficiency of PSCs Optimising supercritical water gasification of biomass: exploring heating strategy through a quantitative kinetic modelling approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1