Wenqiang Huang, Yucheng Jin, Zhemin Li, Lin Yao, Yun Chen, Zheng Luo, Shen Zhou, Jinguo Lin, Feng Liu, Zhifeng Gao, Jun Cheng, Linfeng Zhang, Fangping Ouyang, Jin Zhang, Shanshan Wang
{"title":"Auto-resolving the atomic structure at van der Waals interfaces using a generative model","authors":"Wenqiang Huang, Yucheng Jin, Zhemin Li, Lin Yao, Yun Chen, Zheng Luo, Shen Zhou, Jinguo Lin, Feng Liu, Zhifeng Gao, Jun Cheng, Linfeng Zhang, Fangping Ouyang, Jin Zhang, Shanshan Wang","doi":"10.1038/s41467-025-58160-3","DOIUrl":null,"url":null,"abstract":"<p>The high-resolution visualization of atomic structures is significant for understanding the relationship between the microscopic configurations and macroscopic properties of materials. However, a rapid, accurate, and robust approach to automatically resolve complex patterns in atomic-resolution microscopy remains difficult to implement. Here, we present a Trident strategy-enhanced disentangled representation learning method (a generative model), which utilizes a few unlabelled experimental images with abundant low-cost simulated images to generate a large corpus of annotated simulation data that closely resembles experimental results, producing a high-quality large-volume training dataset. A structural inference model is then trained via a residual neural network which can directly deduce the interlayer slip and rotation of diversified and complicated stacking patterns at van der Waals (vdW) interfaces with picometer-scale accuracy across various materials (e.g. MoS<sub>2</sub>, WS<sub>2</sub>, ReS<sub>2</sub>, ReSe<sub>2</sub>, and 1 T’-MoTe<sub>2</sub>) with different layer numbers (bilayer and trilayers), demonstrating robustness to defects, imaging quality, and surface contaminations. The framework can also identify pattern transition interfaces, quantify subtle motif variations, and discriminate moiré patterns that are difficult to distinguish in frequency domains. Finally, the high-throughput processing ability of our method provides insights into a vdW epitaxy mode where various thermodynamically favorable slip stackings can coexist.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"99 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58160-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The high-resolution visualization of atomic structures is significant for understanding the relationship between the microscopic configurations and macroscopic properties of materials. However, a rapid, accurate, and robust approach to automatically resolve complex patterns in atomic-resolution microscopy remains difficult to implement. Here, we present a Trident strategy-enhanced disentangled representation learning method (a generative model), which utilizes a few unlabelled experimental images with abundant low-cost simulated images to generate a large corpus of annotated simulation data that closely resembles experimental results, producing a high-quality large-volume training dataset. A structural inference model is then trained via a residual neural network which can directly deduce the interlayer slip and rotation of diversified and complicated stacking patterns at van der Waals (vdW) interfaces with picometer-scale accuracy across various materials (e.g. MoS2, WS2, ReS2, ReSe2, and 1 T’-MoTe2) with different layer numbers (bilayer and trilayers), demonstrating robustness to defects, imaging quality, and surface contaminations. The framework can also identify pattern transition interfaces, quantify subtle motif variations, and discriminate moiré patterns that are difficult to distinguish in frequency domains. Finally, the high-throughput processing ability of our method provides insights into a vdW epitaxy mode where various thermodynamically favorable slip stackings can coexist.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.