Space-to-ground infrared camouflage with radiative heat dissipation

IF 23.4 Q1 OPTICS Light-Science & Applications Pub Date : 2025-03-26 DOI:10.1038/s41377-025-01824-y
Bing Qin, Huanzheng Zhu, Rongxuan Zhu, Meng Zhao, Min Qiu, Qiang Li
{"title":"Space-to-ground infrared camouflage with radiative heat dissipation","authors":"Bing Qin, Huanzheng Zhu, Rongxuan Zhu, Meng Zhao, Min Qiu, Qiang Li","doi":"10.1038/s41377-025-01824-y","DOIUrl":null,"url":null,"abstract":"<p>With the development of space exploration and exploitation, it is imperative to address the potential threats posed to space objects, particularly ground-based infrared observation. However, in the extreme space environment, achieving infrared camouflage across different bands with simultaneous thermal management is challenging and has so far slipped out of concern. Here, we propose the space-to-ground infrared camouflage strategy, compatible with radiative heat dissipation. Camouflage in the H, K, mid-wave-infrared (MWIR), and long-wave-infrared (LWIR) bands is achieved through a multilayer structure, with radiative heat dissipation in the very-long-wave-infrared (VLWIR) band. High absorptivity (0.839/0.633) in the H/K bands minimizes the reflected signal of solar radiation and low emissivity (0.132/0.142) in the MWIR/LWIR bands suppresses the thermal radiation signal. Additionally, high emissivity (0.798) in the VLWIR band ensures efficient thermal management, resulting in a temperature decrement of 39.8 °C to the metal reference in the simulated space environment (with 1200 W m<sup>−</sup><sup>2</sup> thermal input). This work inspires sophisticated spectral manipulation in extreme environments and guides the development of camouflage and radiative heat dissipation techniques for space objects.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"183 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01824-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of space exploration and exploitation, it is imperative to address the potential threats posed to space objects, particularly ground-based infrared observation. However, in the extreme space environment, achieving infrared camouflage across different bands with simultaneous thermal management is challenging and has so far slipped out of concern. Here, we propose the space-to-ground infrared camouflage strategy, compatible with radiative heat dissipation. Camouflage in the H, K, mid-wave-infrared (MWIR), and long-wave-infrared (LWIR) bands is achieved through a multilayer structure, with radiative heat dissipation in the very-long-wave-infrared (VLWIR) band. High absorptivity (0.839/0.633) in the H/K bands minimizes the reflected signal of solar radiation and low emissivity (0.132/0.142) in the MWIR/LWIR bands suppresses the thermal radiation signal. Additionally, high emissivity (0.798) in the VLWIR band ensures efficient thermal management, resulting in a temperature decrement of 39.8 °C to the metal reference in the simulated space environment (with 1200 W m2 thermal input). This work inspires sophisticated spectral manipulation in extreme environments and guides the development of camouflage and radiative heat dissipation techniques for space objects.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有辐射散热的空地红外伪装
随着太空探索和利用的发展,当务之急是解决太空物体面临的潜在威胁,特别是地面红外观测。然而,在极端的太空环境中,实现不同波段的红外伪装并同时进行热管理极具挑战性,至今仍未引起人们的关注。在此,我们提出了与辐射散热兼容的空间到地面红外伪装策略。通过多层结构实现 H、K、中波红外(MWIR)和长波红外(LWIR)波段的伪装,并在甚长波红外(VLWIR)波段进行辐射散热。H/K 波段的高吸收率(0.839/0.633)可将太阳辐射的反射信号降至最低,而 MWIR/LWIR 波段的低发射率(0.132/0.142)可抑制热辐射信号。此外,VLWIR 波段的高发射率(0.798)确保了有效的热管理,从而使模拟空间环境(1200 W m-2 热输入)中的金属基准温度降低了 39.8 °C。这项工作启发了在极端环境中进行复杂的光谱操作,并为开发空间物体的伪装和辐射散热技术提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Integrated-photonics-based systems for polarization-gradient cooling of trapped ions Deciphering light transformation in chiral metasurface in real space and time by ultrafast electron microscopy. Absolute thermometry based on Brillouin scattering in gases. On-chip nonlocal metasurface for color router: conquering efficiency-loss from spatial-multiplexing. Multi-dimensional camouflage against VIS-NIR hyperspectral, MIR intensity, and MIR polarization imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1