Catalytic Activation Function of Noble-Metal-Free High-Entropy Alloy for Enhancing SnO2 Acetone Detection Capability

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-27 DOI:10.1021/acsnano.5c00940
Ou Wang, Zhiheng Ma, Zhenggang Xue, Muyu Yan, Bao-Li An, Yongmei Zhao, Jiaqiang Xu, Xiaohong Wang
{"title":"Catalytic Activation Function of Noble-Metal-Free High-Entropy Alloy for Enhancing SnO2 Acetone Detection Capability","authors":"Ou Wang, Zhiheng Ma, Zhenggang Xue, Muyu Yan, Bao-Li An, Yongmei Zhao, Jiaqiang Xu, Xiaohong Wang","doi":"10.1021/acsnano.5c00940","DOIUrl":null,"url":null,"abstract":"Enhancing the gas-sensing properties of metal oxide semiconductors using noble metals’ electronic and chemical sensitization functions is a common approach to develop high-performance gas sensors. However, the high cost and scarcity of noble metals pose challenges to sustainability. In this study, a non-noble metal MnFeCoNiCu high-entropy alloy (HEA) was designed as an alternative to noble metals to enhance the sensitivity of SnO<sub>2</sub> and enable efficient, stable, and rapid detection of acetone (C<sub>3</sub>H<sub>6</sub>O). The MnFeCoNiCu HEA-loaded SnO<sub>2</sub> demonstrated improved performance in C<sub>3</sub>H<sub>6</sub>O detection, including high selectivity (κ &gt; 3), a high sensitivity (<i>R</i><sub>a</sub>/<i>R</i><sub>g</sub> = 4.17 at 0.5 ppm), a low detection limit (30 ppb), fast response and recovery time (4.6 s/5 s), long-term stability (over 50 days), and resistance to humidity (stable at 90% RH). The enhanced performance of the HEA is attributed to the fact that it possesses more valence electrons and the electrons can transfer and redistribute among different atoms, which leads to an increase in active oxygen species and catalytic sites, promoting electron sensitization. This study provides insights into designing and developing a highly catalytic, non-noble metal HEA for gas-sensing applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"12 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00940","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the gas-sensing properties of metal oxide semiconductors using noble metals’ electronic and chemical sensitization functions is a common approach to develop high-performance gas sensors. However, the high cost and scarcity of noble metals pose challenges to sustainability. In this study, a non-noble metal MnFeCoNiCu high-entropy alloy (HEA) was designed as an alternative to noble metals to enhance the sensitivity of SnO2 and enable efficient, stable, and rapid detection of acetone (C3H6O). The MnFeCoNiCu HEA-loaded SnO2 demonstrated improved performance in C3H6O detection, including high selectivity (κ > 3), a high sensitivity (Ra/Rg = 4.17 at 0.5 ppm), a low detection limit (30 ppb), fast response and recovery time (4.6 s/5 s), long-term stability (over 50 days), and resistance to humidity (stable at 90% RH). The enhanced performance of the HEA is attributed to the fact that it possesses more valence electrons and the electrons can transfer and redistribute among different atoms, which leads to an increase in active oxygen species and catalytic sites, promoting electron sensitization. This study provides insights into designing and developing a highly catalytic, non-noble metal HEA for gas-sensing applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无贵金属高熵合金提高SnO2丙酮检测能力的催化活化功能
利用贵金属的电子和化学敏化功能增强金属氧化物半导体的气体传感特性,是开发高性能气体传感器的常用方法。然而,贵金属的高成本和稀缺性给可持续发展带来了挑战。本研究设计了一种非贵金属 MnFeCoNiCu 高熵合金 (HEA),作为贵金属的替代品,以提高 SnO2 的灵敏度,实现对丙酮(C3H6O)的高效、稳定和快速检测。MnFeCoNiCu HEA负载SnO2在C3H6O检测中表现出更高的性能,包括高选择性(κ >3)、高灵敏度(0.5 ppm时Ra/Rg = 4.17)、低检测限(30 ppb)、快速响应和恢复时间(4.6 s/5 s)、长期稳定性(超过50天)和抗潮湿性(在90% RH下稳定)。HEA 性能的提高归因于它拥有更多的价电子,电子可以在不同的原子间转移和重新分配,从而导致活性氧物种和催化位点的增加,促进电子敏化。这项研究为设计和开发用于气体传感应用的高催化性非贵金属 HEA 提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
glucose
阿拉丁
oleylamine
阿拉丁
Molybdenum hexacarbonyl
阿拉丁
nickel(II) acetylacetonate
阿拉丁
Platinum(II) acetylacetonate
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Unveiling Swift Heavy Ion Track Morphology in Sr-Based High-Entropy Perovskites Two-Dimensional Photothermal Nanosheets as Confined Gelation Platforms for Large-Scale, Ultrathin, and Uniform Lamellar Hydrogel Membranes Quantitative Mapping of the Lipid Nanoenvironment around Transmembrane Proteins in Living Cells Programmable Topotactic Phase Transformation of Correlated Mott Oxides toward Reconfigurable Photothermoelectric Devices Unraveling and Sliding of Polypeptide Strands Underlies the Exceptional Toughness of the Triple-Helix Collagen Molecule
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1