Defect and Strain Engineering Coenhanced Nanoscale Ferroelectricity in SrTiO3 Thin Films

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-26 DOI:10.1021/acsnano.5c03518
Chao Chen, Caiwen Li, Jiangxiao Li, Han Gao, Jingtian Zhou, Zhen Wang, Xiangbin Cai, Guofeng Liang, Xiaozhe Yin, Zhibang Shen, Jinhui Yu, Zedong Xu, Minghui Qin, Xubing Lu, Lang Chen, Ning Wang, Ye Zhu, Yu Chen, Guofu Zhou, Xingsen Gao, Yibo Han, Zhenlin Luo, Jun-Ming Liu, Deyang Chen
{"title":"Defect and Strain Engineering Coenhanced Nanoscale Ferroelectricity in SrTiO3 Thin Films","authors":"Chao Chen, Caiwen Li, Jiangxiao Li, Han Gao, Jingtian Zhou, Zhen Wang, Xiangbin Cai, Guofeng Liang, Xiaozhe Yin, Zhibang Shen, Jinhui Yu, Zedong Xu, Minghui Qin, Xubing Lu, Lang Chen, Ning Wang, Ye Zhu, Yu Chen, Guofu Zhou, Xingsen Gao, Yibo Han, Zhenlin Luo, Jun-Ming Liu, Deyang Chen","doi":"10.1021/acsnano.5c03518","DOIUrl":null,"url":null,"abstract":"Tensile biaxial strain has been demonstrated to induce in-plane ferroelectricity in SrTiO<sub>3</sub> thin films at room temperature. However, out-of-plane ferroelectricity is more favorable for electronic device applications. Here, we report the achievement of room-temperature out-of-plane ferroelectric SrTiO<sub>3</sub> thin films with giant tetragonality (<i>c</i>/<i>a</i> ∼ 1.061) and an ultrahigh ferroelectric stablity temperature (&gt;1000 K) through epitaxial strain and defect engineering. Optical second-harmonic generation (SHG) proves that the enhancement of tetragonality enables improved ferroelectricity. Moreover, a combination of scanning transmission electron microscopy (STEM) and X-ray absorption near-edge spectroscopy (XANES) reveals the origin of enhanced tetragonality and strong ferroelectricity in defect- and strain-codriven supertetragonal SrTiO<sub>3</sub> thin films. Our findings present an approach to material design that can be extended to other material systems for the enhancement of ferroelectricity and the observation of emergent phenomena.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"61 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c03518","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tensile biaxial strain has been demonstrated to induce in-plane ferroelectricity in SrTiO3 thin films at room temperature. However, out-of-plane ferroelectricity is more favorable for electronic device applications. Here, we report the achievement of room-temperature out-of-plane ferroelectric SrTiO3 thin films with giant tetragonality (c/a ∼ 1.061) and an ultrahigh ferroelectric stablity temperature (>1000 K) through epitaxial strain and defect engineering. Optical second-harmonic generation (SHG) proves that the enhancement of tetragonality enables improved ferroelectricity. Moreover, a combination of scanning transmission electron microscopy (STEM) and X-ray absorption near-edge spectroscopy (XANES) reveals the origin of enhanced tetragonality and strong ferroelectricity in defect- and strain-codriven supertetragonal SrTiO3 thin films. Our findings present an approach to material design that can be extended to other material systems for the enhancement of ferroelectricity and the observation of emergent phenomena.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SrTiO3薄膜的缺陷与应变工程共增强纳米铁电性
在室温下,拉伸双轴应变可诱导SrTiO3薄膜的面内铁电性。然而,面外铁电更有利于电子器件的应用。在这里,我们报道了通过外延应变和缺陷工程,实现了具有巨大四方性(c/a ~ 1.061)和超高铁电稳定温度(>1000 K)的室温面外铁电SrTiO3薄膜。光学二次谐波(SHG)的产生证明了四方性的增强可以改善铁电性。此外,扫描透射电子显微镜(STEM)和x射线吸收近边光谱(XANES)的结合揭示了缺陷和应变共驱动的超四方SrTiO3薄膜中四方性增强和强铁电性的来源。我们的发现提出了一种材料设计方法,可以扩展到其他材料系统,以增强铁电性和观察紧急现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Charge Transfer between Quantum Dots and Redox Molecules Is Not Auger-Assisted Design Principles of Oral Nanomedicines to Overcome the Delivery Barriers An Ultrasonic Probe-Fabricated Nanocapsule for Cytomembrane-Anchoring Photodynamic Therapy and In Situ Tumor Vaccine Self-Induced Buckling in Hollow Microgels Highly Active Strontium Peroxide Nanoparticles Induce Alkalization/Oxidation to Potentiate Cancer Immuno-Metabolic Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1