Ángela Campo , Anand Kunverji , Karl S. Ryder , Gary J. Ellis , Nuria García , Pilar Tiemblo
{"title":"Impact of UHMW PEO on the ionic speciation and electrochemical properties of EMIC-AlCl3 gel electrolytes","authors":"Ángela Campo , Anand Kunverji , Karl S. Ryder , Gary J. Ellis , Nuria García , Pilar Tiemblo","doi":"10.1016/j.polymer.2025.128327","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer gel electrolytes based on EMIC-AlCl<sub>3</sub> (1:1.5) and ultra-high molecular weight polyethylene oxide (UHMW PEO M<sub>v</sub> = 8 × 10<sup>6</sup> g mol<sup>−1</sup>) were synthesised with PEO concentrations of 2, 3.5, 5, 10 wt% without the use of auxiliary solvents, by melting the polymer into the electrolyte. This method produced elastic gels with progressively increasing elastic modulus. The speciation of the chloroaluminate anions in the gel electrolytes was characterized by NMR and Raman spectroscopy, revealing a decrease in Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup> and corresponding increase in AlCl<sub>4</sub><sup>−</sup> with rising PEO content. In particular, the gel with 10 wt% PEO showed no detectable Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup>. Electrochemical activity of these gels was evaluated using two configurations: a platinum disc electrode and parallel planar aluminium foil electrode, the latter mimicking a practical electrochemical cell operating geometry. Surprisingly, all gels exhibited electrochemical activity, even in the absence of the Al<sub>2</sub>Cl<sub>7</sub><sup>−</sup> species. Increasing PEO concentration led to reduced current densities but enhanced coulombic efficiency. The study discusses the influence of the molecular weight of PEO on ionic speciation and electrochemical performance of the polymer gel electrolytes, providing insights into the interplay between polymer content, ionic speciation, and electrochemical behaviour. These findings contribute to the development of safer, more sustainable aluminium batteries.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"326 ","pages":"Article 128327"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386125003131","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer gel electrolytes based on EMIC-AlCl3 (1:1.5) and ultra-high molecular weight polyethylene oxide (UHMW PEO Mv = 8 × 106 g mol−1) were synthesised with PEO concentrations of 2, 3.5, 5, 10 wt% without the use of auxiliary solvents, by melting the polymer into the electrolyte. This method produced elastic gels with progressively increasing elastic modulus. The speciation of the chloroaluminate anions in the gel electrolytes was characterized by NMR and Raman spectroscopy, revealing a decrease in Al2Cl7− and corresponding increase in AlCl4− with rising PEO content. In particular, the gel with 10 wt% PEO showed no detectable Al2Cl7−. Electrochemical activity of these gels was evaluated using two configurations: a platinum disc electrode and parallel planar aluminium foil electrode, the latter mimicking a practical electrochemical cell operating geometry. Surprisingly, all gels exhibited electrochemical activity, even in the absence of the Al2Cl7− species. Increasing PEO concentration led to reduced current densities but enhanced coulombic efficiency. The study discusses the influence of the molecular weight of PEO on ionic speciation and electrochemical performance of the polymer gel electrolytes, providing insights into the interplay between polymer content, ionic speciation, and electrochemical behaviour. These findings contribute to the development of safer, more sustainable aluminium batteries.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.