Comparative evaluation and economic analysis of metal- and carbon-based nanoadditives in low-viscous waste-derived biofuel blends for diesel engines

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS Case Studies in Thermal Engineering Pub Date : 2025-03-25 DOI:10.1016/j.csite.2025.106057
Xu Han, Ting Li, Guangchun Liu, Suresh Vellaiyan
{"title":"Comparative evaluation and economic analysis of metal- and carbon-based nanoadditives in low-viscous waste-derived biofuel blends for diesel engines","authors":"Xu Han, Ting Li, Guangchun Liu, Suresh Vellaiyan","doi":"10.1016/j.csite.2025.106057","DOIUrl":null,"url":null,"abstract":"This study presents a comparative evaluation of two distinct nanoadditives: a metal-based additive (copper oxide, CuO) and a carbon-based additive (carbon nanotubes, CNTs), focusing on their effects on engine performance and emissions when blended with a biofuel derived from pomelo peel waste (PWB) and conventional diesel fuel (CDF). The PWB bio-oil was extracted via thermal distillation, and a 30 % PWB + CDF blend (CDF30PWB) was further modified with 100 ppm of CuO and CNT nanoparticles. Characterization of CuO and CNT confirmed their catalytic potential for fuel enhancement. Results indicate that CDF30PWB improved brake thermal efficiency (BTE) by 6.09 % compared to CDF, while CNT and CuO further increased BTE by 1.63 % and 3.12 %, respectively. Brake-specific fuel consumption (BSFC) was reduced by 3.95 % for CDF30PWB, with CNT achieving an additional 3.69 % reduction and CuO lowering BSFC by 2.1 %. Emissions analysis showed that hydrocarbon (HC) and carbon monoxide (CO) emissions were reduced by 8.13 % and 2.61 %, respectively, for CDF30PWB, while CNT-enhanced fuel achieved further reductions of 14.59 % (HC) and 14.93 % (CO), and CuO reduced them by 4.29 % and 8.5 %, respectively. NOx emissions increased by 5.15 % with CDF30PWB, but CuO incorporation led to a 12.56 % reduction, and CNTs reduced NOx by 8.45 %. Smoke opacity was lowered by 9.88 % with CuO and 11.05 % with CNTs. Economic analysis highlighted that CuO achieved a 19 % potential cost reduction. This study concludes that CuO is more effective in NOx mitigation at a lower cost, while CNTs optimize engine performance and reduce HC and CO emissions.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"33 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2025.106057","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comparative evaluation of two distinct nanoadditives: a metal-based additive (copper oxide, CuO) and a carbon-based additive (carbon nanotubes, CNTs), focusing on their effects on engine performance and emissions when blended with a biofuel derived from pomelo peel waste (PWB) and conventional diesel fuel (CDF). The PWB bio-oil was extracted via thermal distillation, and a 30 % PWB + CDF blend (CDF30PWB) was further modified with 100 ppm of CuO and CNT nanoparticles. Characterization of CuO and CNT confirmed their catalytic potential for fuel enhancement. Results indicate that CDF30PWB improved brake thermal efficiency (BTE) by 6.09 % compared to CDF, while CNT and CuO further increased BTE by 1.63 % and 3.12 %, respectively. Brake-specific fuel consumption (BSFC) was reduced by 3.95 % for CDF30PWB, with CNT achieving an additional 3.69 % reduction and CuO lowering BSFC by 2.1 %. Emissions analysis showed that hydrocarbon (HC) and carbon monoxide (CO) emissions were reduced by 8.13 % and 2.61 %, respectively, for CDF30PWB, while CNT-enhanced fuel achieved further reductions of 14.59 % (HC) and 14.93 % (CO), and CuO reduced them by 4.29 % and 8.5 %, respectively. NOx emissions increased by 5.15 % with CDF30PWB, but CuO incorporation led to a 12.56 % reduction, and CNTs reduced NOx by 8.45 %. Smoke opacity was lowered by 9.88 % with CuO and 11.05 % with CNTs. Economic analysis highlighted that CuO achieved a 19 % potential cost reduction. This study concludes that CuO is more effective in NOx mitigation at a lower cost, while CNTs optimize engine performance and reduce HC and CO emissions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属基和碳基纳米添加剂用于柴油发动机低粘性废物衍生生物燃料混合物的比较评价和经济分析
本研究对两种不同的纳米添加剂进行了比较评估:金属基添加剂(氧化铜,CuO)和碳基添加剂(碳纳米管,CNTs),重点研究了它们与源自柚子皮废料(PWB)和传统柴油燃料(CDF)的生物燃料混合后对发动机性能和排放的影响。通过热蒸馏提取PWB生物油,并用100 ppm的CuO和CNT纳米颗粒进一步改性30% PWB + CDF共混物(CDF30PWB)。CuO和碳纳米管的表征证实了它们在燃料强化方面的催化潜力。结果表明,CDF30PWB比CDF提高了6.09%的制动热效率,而CNT和CuO分别提高了1.63%和3.12%。CDF30PWB的制动油耗(BSFC)降低了3.95%,碳纳米管又降低了3.69%,CuO将BSFC降低了2.1%。排放分析表明,CDF30PWB的碳氢化合物(HC)和一氧化碳(CO)排放量分别减少了8.13%和2.61%,而碳纳米管增强燃料的碳氢化合物(HC)和一氧化碳(CO)排放量分别减少了14.59%和14.93%,CuO排放量分别减少了4.29%和8.5%。CDF30PWB的NOx排放量增加了5.15%,但CuO的掺入使NOx排放量减少了12.56%,CNTs减少了8.45%。CuO和CNTs分别使烟浊度降低了9.88%和11.05%。经济分析强调,CuO实现了19%的潜在成本降低。该研究得出结论,CuO以更低的成本更有效地减少NOx排放,而CNTs则优化发动机性能并减少HC和CO排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
期刊最新文献
Numerical simulation and parameter analysis of kerosene/oxygen combustion flame in a supersonic spray gun In-Cylinder Flow Field Characteristics and Evolution Mechanism of Unthrottled Gasoline Engine with Early Intake Valve Closure (EIVC) Under Different Operating Conditions Design and Experimental Investigation of a Shell-and-Tube Phase Change Thermal Storage Unit for Data Center Waste Heat Optimization Direction and Selection Strategy for Thin Film Thermoelectric Cooler Materials Techno-Economic Optimal Sizing of Hydrogen–Ammonia Hybrid Storage for Residential Building Multi-Source Energy Systems via Enhanced Chaotic Antlion Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1