Effects of acute low-temperature stress on respiratory metabolism, antioxidants, and metabolomics of red swamp crayfish, Procambarus clarkii

IF 1.8 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology Pub Date : 2025-03-25 DOI:10.1016/j.cbpb.2025.111095
Yu Ding , Wenbin Sha , Yunfei Sun , Yongxu Cheng
{"title":"Effects of acute low-temperature stress on respiratory metabolism, antioxidants, and metabolomics of red swamp crayfish, Procambarus clarkii","authors":"Yu Ding ,&nbsp;Wenbin Sha ,&nbsp;Yunfei Sun ,&nbsp;Yongxu Cheng","doi":"10.1016/j.cbpb.2025.111095","DOIUrl":null,"url":null,"abstract":"<div><div>Crayfish (<em>Procambarus clarkii</em>) aquaculture is threatened by abrupt temperature decreases caused by climatic phenomena, such as cold waves and seasonal fluctuations. In this study, crayfish were exposed to an abrupt temperature change from 17 °C to 7 °C for 24 h to investigate the effects of acute low-temperatures on respiratory metabolism, antioxidants, and metabolomics. The results showed that acute low-temperatures significantly reduced the activities of pyruvate kinase, lactate dehydrogenase, and succinate dehydrogenase in the gills and hemolymph, associated with decreases in anaerobic and aerobic respiratory capacities, and significant decreases in oxygen consumption, ammonia excretion, and maximum metabolic rates. Antioxidant enzymes in the hepatopancreas and hemolymph initially increased then decreased within 24 h. Metabolomics revealed that glycerophospholipid metabolism and glycosylphosphatidylinositol anchor biosynthesis pathways responded to acute low-temperatures, with glycerophospholipids being the most significantly differentially expressed metabolites. These results supported the hypothesis that crayfish exhibit lower metabolic activity at low temperatures. Our data provide mechanistic insight into the biological changes induced by acute low-temperature and may provide insight into culture of <em>P. clarkii</em> in cold waters.</div></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":"278 ","pages":"Article 111095"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495925000260","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Crayfish (Procambarus clarkii) aquaculture is threatened by abrupt temperature decreases caused by climatic phenomena, such as cold waves and seasonal fluctuations. In this study, crayfish were exposed to an abrupt temperature change from 17 °C to 7 °C for 24 h to investigate the effects of acute low-temperatures on respiratory metabolism, antioxidants, and metabolomics. The results showed that acute low-temperatures significantly reduced the activities of pyruvate kinase, lactate dehydrogenase, and succinate dehydrogenase in the gills and hemolymph, associated with decreases in anaerobic and aerobic respiratory capacities, and significant decreases in oxygen consumption, ammonia excretion, and maximum metabolic rates. Antioxidant enzymes in the hepatopancreas and hemolymph initially increased then decreased within 24 h. Metabolomics revealed that glycerophospholipid metabolism and glycosylphosphatidylinositol anchor biosynthesis pathways responded to acute low-temperatures, with glycerophospholipids being the most significantly differentially expressed metabolites. These results supported the hypothesis that crayfish exhibit lower metabolic activity at low temperatures. Our data provide mechanistic insight into the biological changes induced by acute low-temperature and may provide insight into culture of P. clarkii in cold waters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
急性低温胁迫对克氏原螯虾呼吸代谢、抗氧化剂和代谢组学的影响
由于寒潮和季节波动等气候现象引起的气温骤降,对克氏原螯虾(Procambarus clarkii)的养殖构成了威胁。本研究将小龙虾置于17°C到7°C的温度突变环境中24 h,研究急性低温对小龙虾呼吸代谢、抗氧化剂和代谢组学的影响。结果表明,急性低温显著降低了鳃和血淋巴中丙酮酸激酶、乳酸脱氢酶和琥珀酸脱氢酶的活性,导致无氧和有氧呼吸能力下降,耗氧量、氨排泄量和最大代谢率显著降低。肝胰脏和血淋巴抗氧化酶在24 h内先升高后降低。代谢组学显示,甘油磷脂代谢和糖基磷脂酰肌醇锚定生物合成途径对急性低温有反应,其中甘油磷脂是差异表达最显著的代谢物。这些结果支持了小龙虾在低温下表现出较低代谢活性的假设。我们的数据为急性低温诱导的生物学变化提供了机制上的见解,并可能为克拉氏杆菌在冷水中的培养提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
4.50%
发文量
77
审稿时长
22 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.
期刊最新文献
Editorial Board Establishment of an immortalized renal epithelial cell line derived from grass carp and its susceptibility to grass carp Reovirus genotype II Commentary: Taurine as a central osmoprotectant in marine molluscs – Roles in osmoregulation, oxidative balance and immune homeostasis Glucose-dependent insulinotropic polypeptide (GIP) acts as an appetite regulator rather than as a hypoglycemic incretin in grass carp Elasmobranch Aqp10 paralogs differ in glycerol permeability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1