An improved progressive damage model for three-dimensional five-directional braided composites under longitudinal compression

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2025-03-23 DOI:10.1016/j.compositesa.2025.108880
Shaofeng Tang , Kunkun Fu , Yan Li
{"title":"An improved progressive damage model for three-dimensional five-directional braided composites under longitudinal compression","authors":"Shaofeng Tang ,&nbsp;Kunkun Fu ,&nbsp;Yan Li","doi":"10.1016/j.compositesa.2025.108880","DOIUrl":null,"url":null,"abstract":"<div><div>Various failure modes of three-dimensional five-directional braided composites (3D5DBCs) under longitudinal compression have been observed, including yarn fracture and kinking, transverse inter-fiber cracking, matrix plastic deformation/fracture and fiber/matrix interfacial debonding, leading to the difficulty in predicting their mechanical properties. This study proposes an improved progressive damage model for 3D5DBCs under longitudinal compression, addressing all the observed failure modes. Then, the proposed progressive damage model is implemented in a finite element (FE) model to predict the mechanical responses and properties of 3D5DBCs under longitudinal compression. The numerical predictions in terms of compressive stress–strain relations, compressive strengths and failure modes are in good agreement with the experimental results, demonstrating the effectiveness of the proposed progressive damage model. Finally, the failure envelopes of 3D5DBCs under compression-shear loading are predicted using our FE model, and the effectiveness of several classical failure criteria on the strength prediction of 3D5DBCs is discussed.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"194 ","pages":"Article 108880"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25001745","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Various failure modes of three-dimensional five-directional braided composites (3D5DBCs) under longitudinal compression have been observed, including yarn fracture and kinking, transverse inter-fiber cracking, matrix plastic deformation/fracture and fiber/matrix interfacial debonding, leading to the difficulty in predicting their mechanical properties. This study proposes an improved progressive damage model for 3D5DBCs under longitudinal compression, addressing all the observed failure modes. Then, the proposed progressive damage model is implemented in a finite element (FE) model to predict the mechanical responses and properties of 3D5DBCs under longitudinal compression. The numerical predictions in terms of compressive stress–strain relations, compressive strengths and failure modes are in good agreement with the experimental results, demonstrating the effectiveness of the proposed progressive damage model. Finally, the failure envelopes of 3D5DBCs under compression-shear loading are predicted using our FE model, and the effectiveness of several classical failure criteria on the strength prediction of 3D5DBCs is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纵向压缩下三维五向编织复合材料的改进渐进损伤模型
三维五向编织复合材料(3D5DBCs)在纵向压缩下的破坏模式多种多样,包括纱线断裂和扭结、纤维间横向开裂、基体塑性变形/断裂和纤维/基体界面脱粘,导致其力学性能难以预测。本研究提出了一种改进的3D5DBCs在纵向压缩下的渐进损伤模型,涵盖了所有观察到的破坏模式。然后,将提出的渐进式损伤模型应用于有限元模型中,预测了3D5DBCs在纵向压缩下的力学响应和性能。在压应力-应变关系、抗压强度和破坏模式方面的数值预测与试验结果吻合较好,验证了所提渐进损伤模型的有效性。最后,利用有限元模型预测了压剪作用下3D5DBCs的破坏包络,并讨论了几种经典破坏准则对3D5DBCs强度预测的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
Editorial Board Evaluation of the informed isotropic (IISO) viscosity model for compression molding of discontinuous fiber reinforced polymers Reversible interfacial chemistry enables closed-loop recycling and highly thermal conductivity of EPDM/waste rubber composites Multifunctional carbon nanotube@expanded graphite/polydimethylsiloxane composites with exceptional electromagnetic interference shielding and thermal management capability Ballistic behavior of bi-axial pre-tensioned textile-laminate composite structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1