Hydrogen, methane and power tri-generation from coal-based fuels in protonic ceramic fuel cells

IF 9.4 1区 工程技术 Q1 ENERGY & FUELS Energy Pub Date : 2025-03-27 DOI:10.1016/j.energy.2025.135874
Haojie Zhu , Junbiao Li , Yuan Zhang , Zhipeng Liu , Junda You , Guoqing Ma , Ling Fu , Senran Hao , Hongxin Yang , Shuo Zhai , Pengfei Wang , Jing Zhu , Suling Shen , Jialiang Chen , Ying Teng , Bin Chen , Heping Xie
{"title":"Hydrogen, methane and power tri-generation from coal-based fuels in protonic ceramic fuel cells","authors":"Haojie Zhu ,&nbsp;Junbiao Li ,&nbsp;Yuan Zhang ,&nbsp;Zhipeng Liu ,&nbsp;Junda You ,&nbsp;Guoqing Ma ,&nbsp;Ling Fu ,&nbsp;Senran Hao ,&nbsp;Hongxin Yang ,&nbsp;Shuo Zhai ,&nbsp;Pengfei Wang ,&nbsp;Jing Zhu ,&nbsp;Suling Shen ,&nbsp;Jialiang Chen ,&nbsp;Ying Teng ,&nbsp;Bin Chen ,&nbsp;Heping Xie","doi":"10.1016/j.energy.2025.135874","DOIUrl":null,"url":null,"abstract":"<div><div>The traditional utilization of coal fuels is primarily through direct combustion to generate electricity, with low efficiency and significant carbon dioxide emissions conflicting with the goal of carbon neutrality. Here, for the first time, we proposed a novel electrochemical system to achieve the tri-generation of hydrogen, power, and methane from coal-based fuels, with CO<sub>2</sub> emission efficiency reduced in tail gas, enabled by protonic ceramic fuel cells (PCFCs) combined with water gasification of coal and CO<sub>2</sub> methanation. As demonstrated, the system firstly achieved an enhanced hydrogen production rate of up to 34.8 μmol min<sup>−1</sup> g<sup>−1</sup> from the syngas produced by coal gasification. Sequentially, the system achieved an excellent peak power density of 868 mW cm<sup>−2</sup> at 600 °C in the PCFCs fueled by the syngas, enhanced by a catalytic functional layer (CFL, NiMn@YSZ). In addition, the system is able to produce methane at 6.3 mL min<sup>−1</sup> during in-situ CO<sub>2</sub> methanation at 500 °C with a current density of 110 mA cm<sup>−2</sup>. This work introduces a new electrochemical strategy for efficiently utilizing coal to generate electricity and value-added chemicals.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"323 ","pages":"Article 135874"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225015166","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional utilization of coal fuels is primarily through direct combustion to generate electricity, with low efficiency and significant carbon dioxide emissions conflicting with the goal of carbon neutrality. Here, for the first time, we proposed a novel electrochemical system to achieve the tri-generation of hydrogen, power, and methane from coal-based fuels, with CO2 emission efficiency reduced in tail gas, enabled by protonic ceramic fuel cells (PCFCs) combined with water gasification of coal and CO2 methanation. As demonstrated, the system firstly achieved an enhanced hydrogen production rate of up to 34.8 μmol min−1 g−1 from the syngas produced by coal gasification. Sequentially, the system achieved an excellent peak power density of 868 mW cm−2 at 600 °C in the PCFCs fueled by the syngas, enhanced by a catalytic functional layer (CFL, NiMn@YSZ). In addition, the system is able to produce methane at 6.3 mL min−1 during in-situ CO2 methanation at 500 °C with a current density of 110 mA cm−2. This work introduces a new electrochemical strategy for efficiently utilizing coal to generate electricity and value-added chemicals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在质子陶瓷燃料电池中利用煤基燃料产生氢气、甲烷和电能三项能源
煤炭燃料的传统利用主要是通过直接燃烧发电,效率低,二氧化碳排放量大,与碳中和的目标相冲突。在这里,我们首次提出了一种新的电化学系统,通过质子陶瓷燃料电池(pcfc)与煤的水气化和二氧化碳甲烷化相结合,实现煤基燃料三联产氢、电和甲烷,同时降低尾气中的二氧化碳排放效率。实验结果表明,该系统首次实现了煤气化合成气产氢速率的提高,达到34.8 μmol min - 1 g - 1。随后,该系统在以合成气为燃料的pcfc中在600°C下获得了868 mW cm−2的优异峰值功率密度,并通过催化功能层(CFL, NiMn@YSZ)进行了增强。此外,该系统能够在500°C,电流密度为110 mA cm - 2的原位CO2甲烷化过程中以6.3 mL min - 1的速度产生甲烷。本文介绍了一种新的电化学策略,可以有效地利用煤来发电和生产增值化学品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
期刊最新文献
Zero-carbon microgrid energy system with seasonal hydrogen storage for high-proportion renewable energy consumption Exploring the role of nano-enhanced PCMs in indirect solar drying for sustainable guava dehydration with enhanced thermal storage and product stability Global assessment of wind-solar hybrid systems: unraveling physical constraints and economic potential for sustainable energy deployment A novel architecture for enhanced thermal management in fuel cell cooling systems Redesigning energy transition pathways: Integrating mineral constraints and circular economy in net-zero power system planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1