Computationally guided construction of optimal Mo2C/C electrocatalysts toward high-efficiency hydrogen evolution reaction

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2025-03-29 DOI:10.1016/j.apsusc.2025.163109
Ting Guo , Hao Fei , Shuaiting Lv , Fangyang Liu , Dezhi Wang , Zhuangzhi Wu
{"title":"Computationally guided construction of optimal Mo2C/C electrocatalysts toward high-efficiency hydrogen evolution reaction","authors":"Ting Guo ,&nbsp;Hao Fei ,&nbsp;Shuaiting Lv ,&nbsp;Fangyang Liu ,&nbsp;Dezhi Wang ,&nbsp;Zhuangzhi Wu","doi":"10.1016/j.apsusc.2025.163109","DOIUrl":null,"url":null,"abstract":"<div><div>During the synthesis of beta-molybdenum carbide (Mo<sub>2</sub>C), hydrocarbons and their derivatives are typically used as carbon (C) sources and reducing agents, resulting in unavoidable residual carbon. The residual carbon layer may accelerate the sluggish desorption kinetics on the Mo<sub>2</sub>C surface via electronic interactions, and intrinsically enhance the hydrogen evolution catalytic activity of the Mo<sub>2</sub>C/C composite material. To discover the optimal configuration of Mo<sub>2</sub>C/C electrocatalysts for the hydrogen evolution reaction (HER), the hydrogen adsorption free energies (ΔG<sub>H*</sub>) of numerous inequivalent carbon sites were calculated. The corresponding results show that when a monolayer of carbon decorates the surface of Mo<sub>2</sub>C, most of the carbon sites exhibit ideal ΔG<sub>H*</sub>, but once the surface carbon layer increases to a double layer, no significant improvement can be observed. Guided by the computational results, a mild static hydrogen atmosphere calcination strategy was proposed to selectively etch the residual carbon layer on the Mo<sub>2</sub>C surface and achieve accelerated HER kinetics with a low Tafel slope of 46 mV dec<sup>−1</sup>. This work demonstrates that reducing the surface residual carbon layer provides a facile tactic to optimize catalytic activity for metal carbide electrocatalysts.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"698 ","pages":"Article 163109"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225008232","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

During the synthesis of beta-molybdenum carbide (Mo2C), hydrocarbons and their derivatives are typically used as carbon (C) sources and reducing agents, resulting in unavoidable residual carbon. The residual carbon layer may accelerate the sluggish desorption kinetics on the Mo2C surface via electronic interactions, and intrinsically enhance the hydrogen evolution catalytic activity of the Mo2C/C composite material. To discover the optimal configuration of Mo2C/C electrocatalysts for the hydrogen evolution reaction (HER), the hydrogen adsorption free energies (ΔGH*) of numerous inequivalent carbon sites were calculated. The corresponding results show that when a monolayer of carbon decorates the surface of Mo2C, most of the carbon sites exhibit ideal ΔGH*, but once the surface carbon layer increases to a double layer, no significant improvement can be observed. Guided by the computational results, a mild static hydrogen atmosphere calcination strategy was proposed to selectively etch the residual carbon layer on the Mo2C surface and achieve accelerated HER kinetics with a low Tafel slope of 46 mV dec−1. This work demonstrates that reducing the surface residual carbon layer provides a facile tactic to optimize catalytic activity for metal carbide electrocatalysts.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于计算的高效析氢Mo2C/C电催化剂的构建
在合成β-碳化钼(Mo2C)的过程中,碳氢化合物及其衍生物通常被用作碳(C)源和还原剂,从而产生不可避免的残碳。残炭层可能会通过电子相互作用加速 Mo2C 表面迟缓的解吸动力学,并从本质上提高 Mo2C/C 复合材料的氢进化催化活性。为了发现 Mo2C/C 电催化剂在氢进化反应(HER)中的最佳配置,计算了众多不等价碳位点的氢吸附自由能(ΔGH*)。相应的结果表明,当单层碳装饰 Mo2C 表面时,大多数碳位点表现出理想的 ΔGH* ,但当表面碳层增加到双层时,就无法观察到明显的改善。在计算结果的指导下,我们提出了一种温和的静态氢气气氛煅烧策略,以选择性地蚀刻 Mo2C 表面的残余碳层,并实现加速的 HER 动力学,其 Tafel 斜坡低至 46 mV dec-1。这项工作表明,减少表面残炭层为优化金属碳化物电催化剂的催化活性提供了一种简便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Optimizing a novel green slurry by multifunctional pH regulators for ultra-smooth β-Ga2O3 (1 0 0) substrates via chemical mechanical polishing: experimental analysis, theoretical calculation and mechanistic insight Integrated multiscale simulations and surface analysis of atomic oxygen erosion and protection mechanisms in colorless polyimide Large area materials processing via unfocused beams of high-energy femtosecond lasers Evolution of ultrasmooth Si surface under scanning Ar ion beam etching with contamination Synergistic vacancy and fluorine doping in metallic 1T-CoTe2 for high-performance sodium-tellurium battery cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1