Low-Voltage and Stretchable Organic Field Effect Transistor Array Based on Tri-Layer Elastomer Dielectric for Gas Sensing

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2025-03-30 DOI:10.1002/aelm.202400981
Xiaoying Zhang, Xiangxiang Li, Weiyu Wang, Hongchen Jiang, Xinran Zheng, Huiqi Yang, Xin Ye, Hui Yang
{"title":"Low-Voltage and Stretchable Organic Field Effect Transistor Array Based on Tri-Layer Elastomer Dielectric for Gas Sensing","authors":"Xiaoying Zhang,&nbsp;Xiangxiang Li,&nbsp;Weiyu Wang,&nbsp;Hongchen Jiang,&nbsp;Xinran Zheng,&nbsp;Huiqi Yang,&nbsp;Xin Ye,&nbsp;Hui Yang","doi":"10.1002/aelm.202400981","DOIUrl":null,"url":null,"abstract":"<p>Stretchable organic field-effect transistors (OFETs) based gas sensors have attracted significant attention due to their inherent merits such as excellent mechanical compatibility, flexibility, and signal amplification capabilities. However, achieving low-voltage operation remains challenging, which limits their practical application. Herein, a tri-layer dielectric design is developed to achieve low-voltage, high-mobility stretchable organic transistors for gas sensors. The tri-layer dielectric, consisting of a high-κ polymer film, a non-polar polymer layer, and a cross-linking layer, allows the transistors to operate at −5 V. The stretchable transistor-based gas sensors exhibit high sensitivity of gas detection capability. Thus, stretchable field-effect transistors based on tri-layer dielectrics offer a promising strategy for advancing wearable gas sensors.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 10","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400981","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202400981","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stretchable organic field-effect transistors (OFETs) based gas sensors have attracted significant attention due to their inherent merits such as excellent mechanical compatibility, flexibility, and signal amplification capabilities. However, achieving low-voltage operation remains challenging, which limits their practical application. Herein, a tri-layer dielectric design is developed to achieve low-voltage, high-mobility stretchable organic transistors for gas sensors. The tri-layer dielectric, consisting of a high-κ polymer film, a non-polar polymer layer, and a cross-linking layer, allows the transistors to operate at −5 V. The stretchable transistor-based gas sensors exhibit high sensitivity of gas detection capability. Thus, stretchable field-effect transistors based on tri-layer dielectrics offer a promising strategy for advancing wearable gas sensors.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三层弹性体介质的气敏低压可拉伸有机场效应晶体管阵列
基于可拉伸有机场效应晶体管(ofet)的气体传感器由于其优异的机械兼容性、灵活性和信号放大能力等固有优点而受到广泛关注。然而,实现低电压操作仍然具有挑战性,这限制了它们的实际应用。在此,开发了一种三层介质设计,以实现用于气体传感器的低电压,高迁移率可拉伸有机晶体管。由高κ聚合物薄膜、非极性聚合物层和交联层组成的三层电介质允许晶体管在−5 V下工作。基于可拉伸晶体管的气体传感器具有高灵敏度的气体检测能力。因此,基于三层电介质的可拉伸场效应晶体管为推进可穿戴气体传感器提供了一个有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
MIM‐Diode‐Like Rectification in Lateral 1T/1H/1T‐MoS 2 Homojunctions via Interfacial Dipole Engineering Ferroelectric–Electrolyte Hybrid Gate Dielectrics for Organic Synaptic Transistors with Long‐Term Plasticity High-Performance and Energy-Efficient Sub-5 nm 2D Double-Gate MOSFETs Based on Silicon Arsenide Monolayers AI-Assisted Bioelectronics for Personalized Health Management Concurrent Sensing and Communications Based on Intelligent Metasurfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1