Interaction topology optimization by adjustment of edge weights to improve the consensus convergence and prolong the sampling period for a multi-agent system

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED Applied Mathematics and Computation Pub Date : 2025-04-01 DOI:10.1016/j.amc.2025.129428
Tongyou Xu , Ying-Ying Tan , Shanshan Gao , Xuejuan Zhan
{"title":"Interaction topology optimization by adjustment of edge weights to improve the consensus convergence and prolong the sampling period for a multi-agent system","authors":"Tongyou Xu ,&nbsp;Ying-Ying Tan ,&nbsp;Shanshan Gao ,&nbsp;Xuejuan Zhan","doi":"10.1016/j.amc.2025.129428","DOIUrl":null,"url":null,"abstract":"<div><div>The second smallest eigenvalue and the largest eigenvalue of the Laplacian matrix of a simple undirected connected graph <em>G</em> are called the algebraic connectivity <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and the Laplacian spectral radius <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, respectively. For a first-order periodically sampled consensus protocol multi-agent system (MAS), whose interaction topology can be modeled as a graph <em>G</em>, a larger <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> results in a faster consensus convergence rate, while a smaller <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> contributes to a longer sampling period of the system. Adjusting the weights of the edges is an efficient approach to optimize the interaction topology of a MAS, which improves the consensus convergence rate and prolongs the sampling period. If <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> increases, then the weight of one edge <span><math><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>}</mo></math></span> increases, i.e., the increment <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>s</mi><mi>t</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>, and the entries of its eigenvector with respect to <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are not equal. If <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> decreases, then the weight of one edge <span><math><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>}</mo></math></span> decreases, i.e., the increment <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>s</mi><mi>t</mi></mrow></msub><mo>&lt;</mo><mn>0</mn></math></span>, and the entries of its eigenvector with respect to <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are not equal. Moreover, when considering adjusting the weights of edges, some necessary conditions for increasing <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and decreasing <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are also given respectively, both of which are determined by the entries of their eigenvectors with respect to the vertices of edges and the increment of edge weights. A number of numerical exemplifications are presented to support the theoretical findings.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129428"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001559","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The second smallest eigenvalue and the largest eigenvalue of the Laplacian matrix of a simple undirected connected graph G are called the algebraic connectivity λ2(G) and the Laplacian spectral radius λn(G), respectively. For a first-order periodically sampled consensus protocol multi-agent system (MAS), whose interaction topology can be modeled as a graph G, a larger λ2(G) results in a faster consensus convergence rate, while a smaller λn(G) contributes to a longer sampling period of the system. Adjusting the weights of the edges is an efficient approach to optimize the interaction topology of a MAS, which improves the consensus convergence rate and prolongs the sampling period. If λ2(G) increases, then the weight of one edge {vs,vt} increases, i.e., the increment δst>0, and the entries of its eigenvector with respect to vs and vt are not equal. If λn(G) decreases, then the weight of one edge {vs,vt} decreases, i.e., the increment δst<0, and the entries of its eigenvector with respect to vs and vt are not equal. Moreover, when considering adjusting the weights of edges, some necessary conditions for increasing λ2(G) and decreasing λn(G) are also given respectively, both of which are determined by the entries of their eigenvectors with respect to the vertices of edges and the increment of edge weights. A number of numerical exemplifications are presented to support the theoretical findings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于边权调整的交互拓扑优化,提高了多智能体系统的共识收敛性,延长了采样周期
简单无向连通图G的拉普拉斯矩阵的第二小特征值和最大特征值分别称为代数连通性λ2(G)和拉普拉斯谱半径λn(G)。对于一阶周期采样共识协议多智能体系统(MAS),其交互拓扑可以建模为图G,较大的λ2(G)导致更快的共识收敛速度,而较小的λn(G)则导致较长的系统采样周期。调整边权是优化MAS交互拓扑结构的有效方法,提高了共识收敛速度,延长了采样周期。如果λ2(G)增加,则一条边{vs,vt}的权值增加,即增量δst>;0,并且其特征向量相对于vs和vt的项不相等。如果λn(G)减小,则一条边{vs,vt}的权值减小,即增量δst<;0,其特征向量相对于vs和vt的项不相等。此外,在考虑边的权值调整时,分别给出了增加λ2(G)和减少λn(G)的必要条件,这两个条件都是由它们的特征向量相对于边的顶点的分量和边权值的增量决定的。提出了一些数值例子来支持理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
期刊最新文献
Editorial Board Sensor attack detection and identification for cyber-physical systems: A data-driven approach A nonstandard finite difference scheme for an SEIQR epidemiological PDE model A simplified discontinuous reproducing kernel method for impulsive differential equations Effects of directed migration toward a high-reputation exemplar in evolutionary games
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1