A review of grid parity assessment for solar photovoltaics

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS Renewable and Sustainable Energy Reviews Pub Date : 2025-03-31 DOI:10.1016/j.rser.2025.115679
Rong Wang, Sandra Hasanefendic, Bart Bossink
{"title":"A review of grid parity assessment for solar photovoltaics","authors":"Rong Wang,&nbsp;Sandra Hasanefendic,&nbsp;Bart Bossink","doi":"10.1016/j.rser.2025.115679","DOIUrl":null,"url":null,"abstract":"<div><div>Grid parity is considered the tipping point of economic competitiveness of PV systems. However, accurately determining when grid parity is achieved hinges on the reliability and precision of the methodologies and data employed. This paper systematically reviews existing methods for assessing PV grid parity, proposes a structured three-step framework for grid parity assessment, and identifies the potential enhancements for more accurate evaluation outcomes. The framework begins with the calculation of PV costs using the Levelized Cost of Electricity (LCOE) method, continues with predicting PV cost trends through learning curves, and is completed by benchmarking PV costs against electricity prices. Our findings reveal that most current PV cost calculations for grid parity primarily rely on the LCOE method, which can be enhanced by incorporating modifications for integration costs, revenues, PV performance metrics, regional-specific characteristics, and uncertainties. Moreover, learning curve models used to predict PV cost trends can be refined by tailoring learning rates and model formulations to reflect specific stages of technological development and regional differences. Additionally, the results suggest that electricity prices used in grid parity assessment can be adjusted to reflect the impact of policies and market dynamics. This comprehensive review provides a robust framework for assessing grid parity and serves as an essential reference for conducting more precise techno-economic feasibility assessment of PV systems.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"216 ","pages":"Article 115679"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125003521","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Grid parity is considered the tipping point of economic competitiveness of PV systems. However, accurately determining when grid parity is achieved hinges on the reliability and precision of the methodologies and data employed. This paper systematically reviews existing methods for assessing PV grid parity, proposes a structured three-step framework for grid parity assessment, and identifies the potential enhancements for more accurate evaluation outcomes. The framework begins with the calculation of PV costs using the Levelized Cost of Electricity (LCOE) method, continues with predicting PV cost trends through learning curves, and is completed by benchmarking PV costs against electricity prices. Our findings reveal that most current PV cost calculations for grid parity primarily rely on the LCOE method, which can be enhanced by incorporating modifications for integration costs, revenues, PV performance metrics, regional-specific characteristics, and uncertainties. Moreover, learning curve models used to predict PV cost trends can be refined by tailoring learning rates and model formulations to reflect specific stages of technological development and regional differences. Additionally, the results suggest that electricity prices used in grid parity assessment can be adjusted to reflect the impact of policies and market dynamics. This comprehensive review provides a robust framework for assessing grid parity and serves as an essential reference for conducting more precise techno-economic feasibility assessment of PV systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能光伏发电并网平价评估综述
电网平价被认为是光伏系统经济竞争力的转折点。然而,准确地确定何时实现电网平价取决于所采用的方法和数据的可靠性和精度。本文系统地回顾了现有的评估光伏并网平价的方法,提出了一个结构化的三步并网平价评估框架,并确定了更准确的评估结果的潜在改进。该框架首先使用平准化电力成本(LCOE)方法计算光伏成本,然后通过学习曲线预测光伏成本趋势,最后通过将光伏成本与电价进行基准比较来完成。我们的研究结果表明,目前电网平价的光伏成本计算主要依赖于LCOE方法,可以通过整合整合成本、收入、光伏性能指标、区域特定特征和不确定性来增强LCOE方法。此外,用于预测光伏成本趋势的学习曲线模型可以通过调整学习率和模型公式来改进,以反映特定的技术发展阶段和区域差异。此外,研究结果表明,用于电网平价评估的电价可以调整,以反映政策和市场动态的影响。这篇全面的综述为评估电网平价提供了一个强有力的框架,并为进行更精确的光伏系统技术经济可行性评估提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
期刊最新文献
Wind turbine blade damage: A systematic review of detection, diagnosis, performance impact, and lifecycle health management A review on low-load stable combustion technology for boiler in deep peak shaving of coal-fired power units Advances in photovoltaic/thermal assisted ground source heat pump: structural design, material selection, coupling integration, and control strategy optimization Maintenance scheduling optimization in renewable and conventional power systems: A review State-of-the-art of the digital twin concept in HVAC+R systems for thermal management of buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1