Aditya Paul , Michael W. Levin , S. Travis Waller , David Rey
{"title":"Data-driven optimization for drone delivery service planning with online demand","authors":"Aditya Paul , Michael W. Levin , S. Travis Waller , David Rey","doi":"10.1016/j.tre.2025.104095","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we develop an innovative data-driven optimization approach to solve the drone delivery service planning problem with online demand. Drone-based logistics are expected to improve operations by enhancing flexibility and reducing congestion effects induced by last-mile deliveries. With rising digitalization and urbanization, however, logistics service providers are constantly grappling with the challenge of uncertain real-time demand. This study investigates the problem of planning drone delivery service through an urban air traffic network to fulfill dynamic and stochastic demand. Customer requests – if accepted – generate profit and are serviced by individual drone flights as per request origins, destinations and time windows. We cast this stochastic optimization problem as a Markov decision process. We present a novel data-driven optimization approach which generates predictive prescriptions of parameters of a surrogate optimization formulation. Our solution method consists of synthesizing training data via lookahead simulations to train a supervised machine learning model for predicting relative link priority based on the state of the network. This knowledge is then leveraged to selectively create weighted reserve capacity in the network and via a surrogate objective function that controls the trade-off between reserve capacity and profit maximization to maximize the cumulative profit earned. Using numerical experiments based on benchmarking transportation networks, the resulting data-driven optimization policy is shown to outperform a myopic policy. Sensitivity analyses on learning parameters reveal insights into the design of efficient policies for drone delivery service planning with online demand.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"198 ","pages":"Article 104095"},"PeriodicalIF":8.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136655452500136X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we develop an innovative data-driven optimization approach to solve the drone delivery service planning problem with online demand. Drone-based logistics are expected to improve operations by enhancing flexibility and reducing congestion effects induced by last-mile deliveries. With rising digitalization and urbanization, however, logistics service providers are constantly grappling with the challenge of uncertain real-time demand. This study investigates the problem of planning drone delivery service through an urban air traffic network to fulfill dynamic and stochastic demand. Customer requests – if accepted – generate profit and are serviced by individual drone flights as per request origins, destinations and time windows. We cast this stochastic optimization problem as a Markov decision process. We present a novel data-driven optimization approach which generates predictive prescriptions of parameters of a surrogate optimization formulation. Our solution method consists of synthesizing training data via lookahead simulations to train a supervised machine learning model for predicting relative link priority based on the state of the network. This knowledge is then leveraged to selectively create weighted reserve capacity in the network and via a surrogate objective function that controls the trade-off between reserve capacity and profit maximization to maximize the cumulative profit earned. Using numerical experiments based on benchmarking transportation networks, the resulting data-driven optimization policy is shown to outperform a myopic policy. Sensitivity analyses on learning parameters reveal insights into the design of efficient policies for drone delivery service planning with online demand.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.