Analyzing fractional glucose-insulin dynamics using Laplace residual power series methods via the Caputo operator: stability and chaotic behavior

IF 2.6 Q2 MULTIDISCIPLINARY SCIENCES Beni-Suef University Journal of Basic and Applied Sciences Pub Date : 2025-03-31 DOI:10.1186/s43088-025-00608-y
Sayed Saber, Safa M. Mirgani
{"title":"Analyzing fractional glucose-insulin dynamics using Laplace residual power series methods via the Caputo operator: stability and chaotic behavior","authors":"Sayed Saber,&nbsp;Safa M. Mirgani","doi":"10.1186/s43088-025-00608-y","DOIUrl":null,"url":null,"abstract":"<div><h3>\n <b>Background</b>\n </h3><p>The dynamics of glucose-insulin regulation are inherently complex, influenced by delayed responses, feedback mechanisms, and long-term memory effects. Traditional integer-order models often fail to capture these nuances, leading to the adoption of fractional-order models using Caputo derivatives. This study applies the Laplace residual power series method (LRPSM) to explore the glucose-insulin regulatory system’s stability, oscillatory behaviors, and chaotic transitions.</p><h3>\n <b>Results</b>\n </h3><p>Morphologically, the fractional-order glucose-insulin regulatory system revealed transitions between stability, oscillations, and chaos. Key system behaviors were characterized using Lyapunov exponents, bifurcation diagrams, and phase portraits. Numerical simulations validated the effectiveness of LRPSM in capturing essential dynamics, including sensitivity to parameters such as insulin sensitivity and glucose uptake rates. The chaotic behaviors observed emphasize the system’s sensitivity to initial conditions and fractional order.</p><h3>\n <b>Conclusion</b>\n </h3><p>This study highlights the utility of LRPSM in modeling fractional-order biological systems, offering significant advancements in understanding diabetes pathophysiology. The findings pave the way for designing glycemic control strategies and exploring optimized interventions for diabetes management. Future research could integrate additional physiological parameters and explore real-time applications to enhance glycemic control.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"14 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-025-00608-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beni-Suef University Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43088-025-00608-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The dynamics of glucose-insulin regulation are inherently complex, influenced by delayed responses, feedback mechanisms, and long-term memory effects. Traditional integer-order models often fail to capture these nuances, leading to the adoption of fractional-order models using Caputo derivatives. This study applies the Laplace residual power series method (LRPSM) to explore the glucose-insulin regulatory system’s stability, oscillatory behaviors, and chaotic transitions.

Results

Morphologically, the fractional-order glucose-insulin regulatory system revealed transitions between stability, oscillations, and chaos. Key system behaviors were characterized using Lyapunov exponents, bifurcation diagrams, and phase portraits. Numerical simulations validated the effectiveness of LRPSM in capturing essential dynamics, including sensitivity to parameters such as insulin sensitivity and glucose uptake rates. The chaotic behaviors observed emphasize the system’s sensitivity to initial conditions and fractional order.

Conclusion

This study highlights the utility of LRPSM in modeling fractional-order biological systems, offering significant advancements in understanding diabetes pathophysiology. The findings pave the way for designing glycemic control strategies and exploring optimized interventions for diabetes management. Future research could integrate additional physiological parameters and explore real-time applications to enhance glycemic control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用卡普托算子的拉普拉斯残差幂级数方法分析分数葡萄糖-胰岛素动力学:稳定性和混沌行为
葡萄糖-胰岛素调节的动力学本质上是复杂的,受延迟反应、反馈机制和长期记忆效应的影响。传统的整阶模型往往不能捕捉到这些细微差别,导致采用使用Caputo导数的分数阶模型。本研究应用拉普拉斯残差幂级数方法(LRPSM)探讨葡萄糖-胰岛素调节系统的稳定性、振荡行为和混沌过渡。结果在形态学上,分数阶葡萄糖-胰岛素调节系统呈现稳定、振荡和混沌之间的过渡。利用李雅普诺夫指数、分岔图和相图表征了系统的关键行为。数值模拟验证了LRPSM在捕获基本动态方面的有效性,包括对胰岛素敏感性和葡萄糖摄取率等参数的敏感性。观察到的混沌行为强调了系统对初始条件和分数阶的敏感性。本研究强调了LRPSM在分数阶生物系统建模中的应用,为了解糖尿病病理生理提供了重要的进展。这些发现为设计血糖控制策略和探索糖尿病管理的优化干预措施铺平了道路。未来的研究可以整合额外的生理参数,并探索实时应用,以加强血糖控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊介绍: Beni-Suef University Journal of Basic and Applied Sciences (BJBAS) is a peer-reviewed, open-access journal. This journal welcomes submissions of original research, literature reviews, and editorials in its respected fields of fundamental science, applied science (with a particular focus on the fields of applied nanotechnology and biotechnology), medical sciences, pharmaceutical sciences, and engineering. The multidisciplinary aspects of the journal encourage global collaboration between researchers in multiple fields and provide cross-disciplinary dissemination of findings.
期刊最新文献
Analytical wave solutions and bifurcation analysis for optical pulse propagation in resonant nonlinear Schrödinger equation using improved modified extended tanh function method Differential solvent extraction, qualitative phytochemical analysis, isolation of secondary metabolites, antioxidant, enzymes inhibitory, antimicrobial, and phytotoxic potentials of Jurinea himalaica R.R.Stewart Muscone alleviated acetic acid-induced ulcerative colitis in mice through inhibiting NF-κB, IL-23/IL-17A axis, COX-2, and oxidative stress Solvability of m-product mixed non-linear functional integral equations Protein malnutrition impairs skin elasticity in hairless mice by downregulating tropoelastin, fibrillin-1, and lysyl oxidase-like protein-1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1