Single-copy entanglement purification: a robust approach for diverse noise sources

IF 5.6 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2025-04-01 DOI:10.1140/epjqt/s40507-025-00342-5
Sajede Harraz, Shuang Cong
{"title":"Single-copy entanglement purification: a robust approach for diverse noise sources","authors":"Sajede Harraz,&nbsp;Shuang Cong","doi":"10.1140/epjqt/s40507-025-00342-5","DOIUrl":null,"url":null,"abstract":"<div><p>Effectively managing various types of decoherence is crucial for leveraging entanglement in quantum information processing and quantum computing. In this paper, we propose purification circuits that deterministically produce a maximally entangled state from a single copy of an imperfect entangled pair affected by various noise sources. Unlike conventional methods, our approach eliminates the need for multiple copies of the entangled state, pre-purification operations, and imposes no restrictions on the initial entanglement fidelity of the imperfect pair. Our method utilizes ancilla qubits and CNOT gates to address errors from Pauli X and Z (bit flip and phase flip), as well as combinations of these errors that create general mixed entangled states and amplitude-damped entangled states. Our analysis shows that noisy CNOT gates impact fidelity minimally, with only the final two gates being critical. We validate our approach through mathematical analysis and practical implementation in Qiskit, demonstrating its effectiveness and robustness.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00342-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00342-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Effectively managing various types of decoherence is crucial for leveraging entanglement in quantum information processing and quantum computing. In this paper, we propose purification circuits that deterministically produce a maximally entangled state from a single copy of an imperfect entangled pair affected by various noise sources. Unlike conventional methods, our approach eliminates the need for multiple copies of the entangled state, pre-purification operations, and imposes no restrictions on the initial entanglement fidelity of the imperfect pair. Our method utilizes ancilla qubits and CNOT gates to address errors from Pauli X and Z (bit flip and phase flip), as well as combinations of these errors that create general mixed entangled states and amplitude-damped entangled states. Our analysis shows that noisy CNOT gates impact fidelity minimally, with only the final two gates being critical. We validate our approach through mathematical analysis and practical implementation in Qiskit, demonstrating its effectiveness and robustness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单拷贝纠缠净化:一种针对不同噪声源的鲁棒方法
有效管理各种类型的退相干对于在量子信息处理和量子计算中利用纠缠至关重要。在本文中,我们提出了净化电路,它能从受各种噪声源影响的不完全纠缠对的单个副本中确定性地产生最大纠缠态。与传统方法不同,我们的方法不需要纠缠态的多个副本和净化前操作,对不完全纠缠对的初始纠缠保真度也没有限制。我们的方法利用辅助量子比特和 CNOT 门来解决保利 X 和 Z 误差(位翻转和相位翻转),以及产生一般混合纠缠态和振幅阻尼纠缠态的这些误差的组合。我们的分析表明,噪声 CNOT 门对保真度的影响很小,只有最后两个门是关键。我们通过数学分析和在 Qiskit 中的实际应用验证了我们的方法,证明了它的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
Error correction for distributed quantum computing Building bridges in quantum information science education: expert insights to guide framework development for interdisciplinary teaching and evolution of common language Correction: Quantum simulation of the Hubbard model on a graphene hexagon: strengths of IQPE and noise constraints An efficient large-scale privacy amplification scheme exceeding 10G bits for quantum key distribution Moving beyond “dual use”: quantum technologies and the need for new research security paradigms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1