{"title":"Deep Learning-driven Microfluidic-SERS to Characterize the Heterogeneity in Exosomes for Classifying Non-Small Cell Lung Cancer Subtypes","authors":"Hui Chen, Hongyi Liu, Longqiang Xing, Dandan Fan, Nan Chen, Pei Ma, Xuedian Zhang","doi":"10.1021/acssensors.4c03621","DOIUrl":null,"url":null,"abstract":"Lung cancer exhibits strong heterogeneity, and its early diagnosis and precise subtyping are of great importance, as they can increase the ability to deliver personalized medicines by tailoring therapy regimens. Tissue biopsy, albeit the gold standard, is invasive, costly and provides limited information about the tumor and its molecular landscape. Exosomes, as promising biomarkers for lung cancer, are a heterogeneous collection of membranous vesicles containing tumor-specific information for liquid biopsy to identify lung cancer subtypes. However, the small size, complex structure, and heterogeneous molecular features of exosomes pose significant challenges for their effective isolation and analysis. Herein, we report a deep learning-driven microfluidic chip with surface-enhanced Raman scattering (SERS) readout to characterize the differences in exosomes for the early diagnosis and molecular subtyping of non-small cell lung cancer (NSCLC). This integration comprises a processing unit for exosome capture and enrichment using polystyrene microspheres (PS) binding gold nanocubes (AuNCs) and anti-CD-9 antibody (denoted as PACD), and an optical sensing unit to trap the PACD and detect SERS signals from these exosomes. This system achieved a maximum trapping efficiency of 85%, and could distinguish three different NSCLC cell lines from the normal cell line with an overall accuracy of 97.88% and an area under the curve (AUC) of over 0.95 for each category. This work highlights the combined power of deep learning, SERS, and microfluidics in realizing the capture, detection, and analysis of exosomes from biological matrices, which may pave the way for clinical exosome-based cancer diagnosis and prognostication in the future.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"38 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03621","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer exhibits strong heterogeneity, and its early diagnosis and precise subtyping are of great importance, as they can increase the ability to deliver personalized medicines by tailoring therapy regimens. Tissue biopsy, albeit the gold standard, is invasive, costly and provides limited information about the tumor and its molecular landscape. Exosomes, as promising biomarkers for lung cancer, are a heterogeneous collection of membranous vesicles containing tumor-specific information for liquid biopsy to identify lung cancer subtypes. However, the small size, complex structure, and heterogeneous molecular features of exosomes pose significant challenges for their effective isolation and analysis. Herein, we report a deep learning-driven microfluidic chip with surface-enhanced Raman scattering (SERS) readout to characterize the differences in exosomes for the early diagnosis and molecular subtyping of non-small cell lung cancer (NSCLC). This integration comprises a processing unit for exosome capture and enrichment using polystyrene microspheres (PS) binding gold nanocubes (AuNCs) and anti-CD-9 antibody (denoted as PACD), and an optical sensing unit to trap the PACD and detect SERS signals from these exosomes. This system achieved a maximum trapping efficiency of 85%, and could distinguish three different NSCLC cell lines from the normal cell line with an overall accuracy of 97.88% and an area under the curve (AUC) of over 0.95 for each category. This work highlights the combined power of deep learning, SERS, and microfluidics in realizing the capture, detection, and analysis of exosomes from biological matrices, which may pave the way for clinical exosome-based cancer diagnosis and prognostication in the future.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.