The synergistic effect of Ni doping on Cu/Cu2O(111) surface in aqueous phase reforming of methanol for hydrogen production

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2025-04-02 DOI:10.1016/j.ijhydene.2025.03.399
Haiping Zhu , Yuxin Ge , Pengcheng Zhao , Zihan Sun , Zhuoyu Zheng , Fan Yang , Lin Chen , Yongqi Mao , Xueer Huang , Jiajin Li , Minglei Lu , Tiejun Wang
{"title":"The synergistic effect of Ni doping on Cu/Cu2O(111) surface in aqueous phase reforming of methanol for hydrogen production","authors":"Haiping Zhu ,&nbsp;Yuxin Ge ,&nbsp;Pengcheng Zhao ,&nbsp;Zihan Sun ,&nbsp;Zhuoyu Zheng ,&nbsp;Fan Yang ,&nbsp;Lin Chen ,&nbsp;Yongqi Mao ,&nbsp;Xueer Huang ,&nbsp;Jiajin Li ,&nbsp;Minglei Lu ,&nbsp;Tiejun Wang","doi":"10.1016/j.ijhydene.2025.03.399","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous phase reforming of methanol (APRM) is a promising technology for efficiently producing hydrogen (H<sub>2</sub>) in a sustainable approach, enabling convenient and safe H<sub>2</sub> storage and transportation. Herein, we develop a Ni/Cu/Cu<sub>2</sub>O@CA catalyst with excellent performance by integrating density functional theory (DFT) calculation and experimental investigations. DFT results show that Ni doping greatly reduced the activation energy (E<sub>a</sub>) of CH<sub>3</sub>OH dehydrogenation and H<sub>2</sub>O dissociation, especially the E<sub>a</sub> of the rate-limiting step of CH<sub>3</sub>O∗ → CH<sub>2</sub>O∗ + H∗ from 1.71 eV to 1.28 eV. Additionally, the Cu/Cu<sub>2</sub>O(111) surface is found to promote the CO conversion. To verify the synergistic effect between Ni and Cu/Cu<sub>2</sub>O(111), a 3D spherical porous Ni/Cu/Cu<sub>2</sub>O@CA catalyst is synthesized for APRM experiments, achieving a peak H<sub>2</sub> production rate of 135.93 μmolH<sub>2</sub>/g<sub>cat</sub>/s at 240 °C, which is 2.0 times higher than that of the Cu/Cu<sub>2</sub>O@CA catalyst. Overall, this work presents an implementable strategy for developing non-noble metal catalysts for sustainable H<sub>2</sub> production.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"123 ","pages":"Pages 52-60"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925015514","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous phase reforming of methanol (APRM) is a promising technology for efficiently producing hydrogen (H2) in a sustainable approach, enabling convenient and safe H2 storage and transportation. Herein, we develop a Ni/Cu/Cu2O@CA catalyst with excellent performance by integrating density functional theory (DFT) calculation and experimental investigations. DFT results show that Ni doping greatly reduced the activation energy (Ea) of CH3OH dehydrogenation and H2O dissociation, especially the Ea of the rate-limiting step of CH3O∗ → CH2O∗ + H∗ from 1.71 eV to 1.28 eV. Additionally, the Cu/Cu2O(111) surface is found to promote the CO conversion. To verify the synergistic effect between Ni and Cu/Cu2O(111), a 3D spherical porous Ni/Cu/Cu2O@CA catalyst is synthesized for APRM experiments, achieving a peak H2 production rate of 135.93 μmolH2/gcat/s at 240 °C, which is 2.0 times higher than that of the Cu/Cu2O@CA catalyst. Overall, this work presents an implementable strategy for developing non-noble metal catalysts for sustainable H2 production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ni掺杂Cu/Cu2O(111)表面对甲醇水相重整制氢的协同作用
甲醇水相重整(APRM)是一种有前途的可持续高效制氢技术,可实现方便、安全的氢气储存和运输。本文通过密度泛函理论(DFT)计算和实验研究相结合,开发了性能优异的Ni/Cu/Cu2O@CA催化剂。DFT结果表明,Ni的掺杂大大降低了CH3OH脱氢和H2O解离的活化能(Ea),特别是ch30 *→CH2O * + H *这一限制步骤的活化能(Ea)从1.71 eV降低到1.28 eV。此外,Cu/Cu2O(111)表面促进了CO的转化。为了验证Ni与Cu/Cu2O(111)之间的协同作用,合成了三维球形多孔Ni/Cu/Cu2O@CA催化剂用于APRM实验,在240℃时H2产率达到135.93 μmolH2/gcat/s,是Cu/Cu2O@CA催化剂的2.0倍。总的来说,这项工作提出了一个可实施的策略,开发非贵金属催化剂可持续制氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Ni(NO3)2·6H2O
麦克林
Ni(NO3)2·6H2O
阿拉丁
methanol (CH3OH)
阿拉丁
Citric acid (CA)
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Editorial Board Juan Carlos Bolcich: The nuclear physicist who changed the world from Bariloche, Argentina Stabilization of premixed hydrogen–air flames in a trapped vortex combustor Effects of rare-earth ion species and their concentrations on the proton conductivity of ceria Exploring fuel-metal compatibility behaviors and mechanisms for methanol and ammonia fueled engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1