Enhanced cycling stability of lithium-ion batteries with Sn-MOF derived Sn anodes encapsulated within a three-dimensional carbon framework

IF 3.3 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Solid State Sciences Pub Date : 2025-04-01 DOI:10.1016/j.solidstatesciences.2025.107920
Yuning Cui , Zuxin Xu , Hailong Qiu , Di Jin
{"title":"Enhanced cycling stability of lithium-ion batteries with Sn-MOF derived Sn anodes encapsulated within a three-dimensional carbon framework","authors":"Yuning Cui ,&nbsp;Zuxin Xu ,&nbsp;Hailong Qiu ,&nbsp;Di Jin","doi":"10.1016/j.solidstatesciences.2025.107920","DOIUrl":null,"url":null,"abstract":"<div><div>Sn anodes, noted for their abundance and high theoretical capacity, have garnered significant attention for lithium-ion batteries. Nonetheless, their significant volume expansion poses challenges, leading to rapid capacity fade and electrode degradation. To address this, a straightforward high-temperature calcination method is employed to encapsulate nanoscale Sn particles within a porous, honeycomb-structured three-dimensional carbon framework. This approach effectively mitigates volume expansion, improves cycling performance, prevents Sn aggregation, and maintains structural integrity. Notably, the Sn/C/3DC composite exhibits remarkable electrochemical properties, maintaining high charge-discharge capacities (1044.0 and 1047.9 mAh g<sup>−1</sup>) over 1000 cycles at 0.5 A g<sup>−1</sup>. Even after 4000 cycles at a current density of 5 A g<sup>−1</sup>, it retains a discharge capacity of 328.5 mAh g<sup>−1</sup>. This study paves the way for the advancement of sophisticated metal anode materials for lithium-ion batteries.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"163 ","pages":"Article 107920"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825000986","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Sn anodes, noted for their abundance and high theoretical capacity, have garnered significant attention for lithium-ion batteries. Nonetheless, their significant volume expansion poses challenges, leading to rapid capacity fade and electrode degradation. To address this, a straightforward high-temperature calcination method is employed to encapsulate nanoscale Sn particles within a porous, honeycomb-structured three-dimensional carbon framework. This approach effectively mitigates volume expansion, improves cycling performance, prevents Sn aggregation, and maintains structural integrity. Notably, the Sn/C/3DC composite exhibits remarkable electrochemical properties, maintaining high charge-discharge capacities (1044.0 and 1047.9 mAh g−1) over 1000 cycles at 0.5 A g−1. Even after 4000 cycles at a current density of 5 A g−1, it retains a discharge capacity of 328.5 mAh g−1. This study paves the way for the advancement of sophisticated metal anode materials for lithium-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在三维碳框架内封装Sn- mof衍生的Sn阳极增强锂离子电池的循环稳定性
锡阳极以其丰富和高理论容量而闻名,已经引起了锂离子电池的极大关注。然而,它们显著的体积膨胀带来了挑战,导致快速的容量衰减和电极退化。为了解决这个问题,采用一种简单的高温煅烧方法将纳米级锡颗粒封装在多孔的蜂窝状三维碳框架中。这种方法有效地减轻了体积膨胀,提高了循环性能,防止了锡的聚集,并保持了结构的完整性。值得注意的是,Sn/C/3DC复合材料表现出卓越的电化学性能,在0.5 A g - 1下,在1000次循环中保持高充放电容量(1044.0和1047.9 mAh g - 1)。即使在5a g−1的电流密度下,经过4000次循环后,它仍保持328.5 mAh g−1的放电容量。这项研究为锂离子电池先进的金属负极材料的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
期刊最新文献
Poly(para-phenylenediamine) - derived carbon nanofiber aerogel for energy storage and environmental applications A dobrovolskyite-type Na4Ca(SO4)3 sulfate: structural phase transition, thermal expansion and ionic conductivity Single-source polyphosphazene-derived N, P, S co-doping HCs for high-performance SIBs anode Synthesis and enhancing the microstructure, optical and dielectric features of PS-PEG-SiC-ZrO2 for optoelectronics and high energy storage applications Graphical abstract TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1