Organic photovoltaics generate more power under stretching

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2025-04-02 DOI:10.1016/j.matt.2025.102062
Saimeng Li , Junwei Liu , Vakhobjon Kuvondikov , Jinyue Yan , Long Ye
{"title":"Organic photovoltaics generate more power under stretching","authors":"Saimeng Li ,&nbsp;Junwei Liu ,&nbsp;Vakhobjon Kuvondikov ,&nbsp;Jinyue Yan ,&nbsp;Long Ye","doi":"10.1016/j.matt.2025.102062","DOIUrl":null,"url":null,"abstract":"<div><div>Intrinsically stretchable organic photovoltaics (IS-OPVs) are poised to revolutionize wearable and flexible electronics by combining mechanical robustness with high power conversion efficiency. Writing in <em>Joule</em>, researchers introduced new IS-OPVs that retain over 80% of their initial efficiency under 50% strain and exhibit an increase in power output when strained to 40%, marking a remarkable improvement over conventional photovoltaic cells, which typically experience efficiency degradation and failure when stretched. This approach could inspire the next wave of stretchable electronics.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 4","pages":"Article 102062"},"PeriodicalIF":17.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525001055","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsically stretchable organic photovoltaics (IS-OPVs) are poised to revolutionize wearable and flexible electronics by combining mechanical robustness with high power conversion efficiency. Writing in Joule, researchers introduced new IS-OPVs that retain over 80% of their initial efficiency under 50% strain and exhibit an increase in power output when strained to 40%, marking a remarkable improvement over conventional photovoltaic cells, which typically experience efficiency degradation and failure when stretched. This approach could inspire the next wave of stretchable electronics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机光伏在拉伸下产生更多的能量
内在可拉伸有机光伏(is - opv)将机械稳健性与高功率转换效率相结合,有望彻底改变可穿戴和柔性电子产品。在Joule杂志上,研究人员介绍了新的is - opv,在50%的应变下保持80%以上的初始效率,当应变到40%时,输出功率增加,这是对传统光伏电池的显著改进,传统光伏电池在拉伸时通常会出现效率下降和失效。这种方法可能会激发下一波可拉伸电子产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Sweat-activated conductive hydrogel nanomesh for breathable, long-term electrophysiological monitoring and human-centric interfaces Spatially confined synthesis of CsPbBr3 quantum dots for high-performance pure-blue light-emitting diodes Perturbing dynamics of active emulsions and their collectives Evolution from topological Dirac metal to flat-band-induced antiferromagnet in layered KxNi4S2 (0 ≤ x ≤ 1) High-mobility PbSe crystals with trace Sb doping for wide-temperature thermoelectric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1