A thermal mechanical coupled damage accumulation model for rare earth-doped EB-PVD TBCs under isothermal oxidation, cyclic oxidation and creep conditions
Ziang Li , Kun Xiong , Dongxu Li , Cheng Hou , Xueling Fan
{"title":"A thermal mechanical coupled damage accumulation model for rare earth-doped EB-PVD TBCs under isothermal oxidation, cyclic oxidation and creep conditions","authors":"Ziang Li , Kun Xiong , Dongxu Li , Cheng Hou , Xueling Fan","doi":"10.1016/j.surfcoat.2025.132088","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal barrier coatings (TBCs), a key thermal protection technology, can effectively improve the service temperature and life of aircraft engineturbine blades. It is crucial to accurately predict the damage and life of TBCs under service environments for ensuring the safe and stable operation of engines. In this work, the isothermal oxidation, cyclic oxidation and creep tests of EB-PVD TBCs were carried out at 980 °C. The microstructure evolution of the TBCs was observed to reveal the failure mechanism of TBCs. The vertical compressive strain and compressive stress of TBCs were determined to characterize TBCs damage based on room-temperature compression tests and three-dimensional digital image correlation technology. In addition, a nonlinear coupled damage accumulation model of TBCs was developed, considering high-temperature oxidation, cyclic oxidation and creep conditions at 980 °C. Results show that the TBCs damage during service can be attributed to factors including the thermally grown oxide (TGO) growth, thermal mismatch stress and plastic deformation accumulation. The error between predicted damage and experimental results is <15 %.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"505 ","pages":"Article 132088"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225003627","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal barrier coatings (TBCs), a key thermal protection technology, can effectively improve the service temperature and life of aircraft engineturbine blades. It is crucial to accurately predict the damage and life of TBCs under service environments for ensuring the safe and stable operation of engines. In this work, the isothermal oxidation, cyclic oxidation and creep tests of EB-PVD TBCs were carried out at 980 °C. The microstructure evolution of the TBCs was observed to reveal the failure mechanism of TBCs. The vertical compressive strain and compressive stress of TBCs were determined to characterize TBCs damage based on room-temperature compression tests and three-dimensional digital image correlation technology. In addition, a nonlinear coupled damage accumulation model of TBCs was developed, considering high-temperature oxidation, cyclic oxidation and creep conditions at 980 °C. Results show that the TBCs damage during service can be attributed to factors including the thermally grown oxide (TGO) growth, thermal mismatch stress and plastic deformation accumulation. The error between predicted damage and experimental results is <15 %.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.