CPFormer: End-to-End Multi-Person Human Pose Estimation From Raw Radar Cubes With Transformers

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2025-02-21 DOI:10.1109/JSEN.2025.3542078
Lin Chen;Guoli Wang
{"title":"CPFormer: End-to-End Multi-Person Human Pose Estimation From Raw Radar Cubes With Transformers","authors":"Lin Chen;Guoli Wang","doi":"10.1109/JSEN.2025.3542078","DOIUrl":null,"url":null,"abstract":"It is challenging to reconstruct human pose in multi-person scenes using a single commercial millimeter-wave (mmWave) radar due to its limited resolution and susceptibility to noise. On the other hand, the signal processing process may cause the loss of detailed features of the raw radar signals or introduce errors, making it difficult to perform detailed analysis of radar signals in multi-person scenes. To address these issues, a cube pose transformer (CPFormer) is proposed, an end-to-end method for multi-person pose estimation from raw radar cubes. Specifically, the CPFormer consists of a learnable 3-D-discrete Fourier transform (DFT) module and Transformer-based networks. The learnable 3-D-DFT module extracts features from raw radar cubes and adaptively learns the time-to-frequency domain transformation for each dimension, replacing the traditional DFT. The Transformer includes the dual-stream hierarchical encoder (DHE) and the multi-person pose decoder (MPD). First, the proposed spatiotemporal fusion tokenizer (SFT) captures the spatiotemporal cues of adjacent frames and represents the radar cubes as token embeddings. Then, the DHE uses window attention and global cross-view attention (GCVA) to learn the local, global, and cross-view dependencies from the radar cubes of the horizontal and vertical views, to extract fine-grained sensing cues. The MPD directly predicts multi-person poses based on features extracted by the encoder, without separating signals of different targets in the low-resolution radar data. Evaluated on a multi-person human pose dataset collected with a TI AWR1843 Boost mmWave radar in two different environments, the CPFormer achieves the lowest pose estimation error.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 7","pages":"12466-12478"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10899762/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

It is challenging to reconstruct human pose in multi-person scenes using a single commercial millimeter-wave (mmWave) radar due to its limited resolution and susceptibility to noise. On the other hand, the signal processing process may cause the loss of detailed features of the raw radar signals or introduce errors, making it difficult to perform detailed analysis of radar signals in multi-person scenes. To address these issues, a cube pose transformer (CPFormer) is proposed, an end-to-end method for multi-person pose estimation from raw radar cubes. Specifically, the CPFormer consists of a learnable 3-D-discrete Fourier transform (DFT) module and Transformer-based networks. The learnable 3-D-DFT module extracts features from raw radar cubes and adaptively learns the time-to-frequency domain transformation for each dimension, replacing the traditional DFT. The Transformer includes the dual-stream hierarchical encoder (DHE) and the multi-person pose decoder (MPD). First, the proposed spatiotemporal fusion tokenizer (SFT) captures the spatiotemporal cues of adjacent frames and represents the radar cubes as token embeddings. Then, the DHE uses window attention and global cross-view attention (GCVA) to learn the local, global, and cross-view dependencies from the radar cubes of the horizontal and vertical views, to extract fine-grained sensing cues. The MPD directly predicts multi-person poses based on features extracted by the encoder, without separating signals of different targets in the low-resolution radar data. Evaluated on a multi-person human pose dataset collected with a TI AWR1843 Boost mmWave radar in two different environments, the CPFormer achieves the lowest pose estimation error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CPFormer:端到端多个人姿态估计从原始雷达立方体与变压器
由于单一商用毫米波雷达的分辨率有限且易受噪声影响,因此在多人场景中重建人体姿态具有挑战性。另一方面,信号处理过程可能导致原始雷达信号细节特征的丢失或引入误差,给多人场景下雷达信号的详细分析带来困难。为了解决这些问题,提出了一种基于原始雷达立方体的多人姿态估计端到端方法——立方体姿态变压器(CPFormer)。具体来说,CPFormer由一个可学习的三维离散傅立叶变换(DFT)模块和基于transformer的网络组成。可学习的三维DFT模块从原始雷达数据集中提取特征,并自适应学习每个维度的时频域变换,取代传统的DFT。变压器包括双流分层编码器(DHE)和多人姿态解码器(MPD)。首先,提出的时空融合标记器(SFT)捕获相邻帧的时空线索,并将雷达立方体表示为标记嵌入。然后,DHE使用窗口注意和全局交叉视图注意(GCVA)从水平和垂直视图的雷达立方体中学习局部、全局和交叉视图依赖关系,以提取细粒度的感知线索。MPD根据编码器提取的特征直接预测多人姿态,而无需在低分辨率雷达数据中分离不同目标的信号。通过对TI AWR1843 Boost毫米波雷达在两种不同环境下收集的多人人体姿态数据集进行评估,CPFormer实现了最低的姿态估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Council IEEE Sensors Council Unconstrained Sleep Apnea Detection With Conv-ViT Network: LoRA Tuning for Personalized Monitoring IEEE Sensors Council A Noncontact Open-Set Fault Diagnosis Method Based on Latent Space Disentanglement and Prototype Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1