Enhanced Epilepsy Sensitivity and Detection Rate With Improved Specificity by Integration of Modified LSTM Networks

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2025-02-26 DOI:10.1109/JSEN.2025.3543182
Venkata Narayana Vaddi;Prakash Kodali
{"title":"Enhanced Epilepsy Sensitivity and Detection Rate With Improved Specificity by Integration of Modified LSTM Networks","authors":"Venkata Narayana Vaddi;Prakash Kodali","doi":"10.1109/JSEN.2025.3543182","DOIUrl":null,"url":null,"abstract":"Epileptic seizures represent a critical concern in mental health, arising from abnormal synchronization and rapid neuronal activity in the brain. The consequences of such seizures, including loss of consciousness and cognitive impairment, have significant psychological, social, and cognitive implications. Electroencephalography (EEG) and sensor data play a pivotal role in epilepsy detection, leveraging machine learning techniques to analyze extensive datasets. This article presents a novel approach that combines long short-term memory (LSTM) networks and wavelet transform (WT) techniques to enhance seizure detection accuracy. The proposed multimodule approach, featuring residual neural networks and convolutional neural networks (CNNs), coupled with k-fold validation, achieves an accuracy of 98.5%, sensitivity of 99.0%, specificity of 98.0% and an AUC-receiver operating characteristic (ROC) value of 0.95 for classifying interictal epileptiform discharges. This underscores the model’s efficacy in addressing the complexities of EEG signal analysis.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 7","pages":"11963-11970"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10906053/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Epileptic seizures represent a critical concern in mental health, arising from abnormal synchronization and rapid neuronal activity in the brain. The consequences of such seizures, including loss of consciousness and cognitive impairment, have significant psychological, social, and cognitive implications. Electroencephalography (EEG) and sensor data play a pivotal role in epilepsy detection, leveraging machine learning techniques to analyze extensive datasets. This article presents a novel approach that combines long short-term memory (LSTM) networks and wavelet transform (WT) techniques to enhance seizure detection accuracy. The proposed multimodule approach, featuring residual neural networks and convolutional neural networks (CNNs), coupled with k-fold validation, achieves an accuracy of 98.5%, sensitivity of 99.0%, specificity of 98.0% and an AUC-receiver operating characteristic (ROC) value of 0.95 for classifying interictal epileptiform discharges. This underscores the model’s efficacy in addressing the complexities of EEG signal analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进LSTM网络整合提高癫痫敏感性和检出率,提高特异性
癫痫发作是精神健康中的一个重要问题,由大脑中的异常同步和快速神经元活动引起。这种癫痫发作的后果,包括意识丧失和认知障碍,具有重大的心理、社会和认知影响。脑电图(EEG)和传感器数据在癫痫检测中发挥关键作用,利用机器学习技术分析广泛的数据集。本文提出了一种结合长短期记忆(LSTM)网络和小波变换(WT)技术来提高癫痫检测准确率的新方法。基于残差神经网络和卷积神经网络(cnn)的多模块分类方法,结合k-fold验证,准确率为98.5%,灵敏度为99.0%,特异性为98.0%,auc -受试者工作特征(ROC)值为0.95。这强调了该模型在解决脑电图信号分析的复杂性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Council IEEE Sensors Council 2025 Reviewers List IEEE Sensors Council IEEE Sensors Council
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1