High-energy proton beam generation via combined radiation pressure acceleration and laser wakefield acceleration in modulated plasma channels

IF 1.5 4区 物理与天体物理 Q3 OPTICS The European Physical Journal D Pub Date : 2025-04-02 DOI:10.1140/epjd/s10053-025-00977-0
Xin Chen, Lu Yang, Xiao-Nan Wang, Li Xiong, Peng-Fan Chen, Hai-Long Zhou, Xiao-Fei Lan, Yong-Sheng Huang, Yang-Fan He
{"title":"High-energy proton beam generation via combined radiation pressure acceleration and laser wakefield acceleration in modulated plasma channels","authors":"Xin Chen,&nbsp;Lu Yang,&nbsp;Xiao-Nan Wang,&nbsp;Li Xiong,&nbsp;Peng-Fan Chen,&nbsp;Hai-Long Zhou,&nbsp;Xiao-Fei Lan,&nbsp;Yong-Sheng Huang,&nbsp;Yang-Fan He","doi":"10.1140/epjd/s10053-025-00977-0","DOIUrl":null,"url":null,"abstract":"<p>High-energy proton beams are essential for fundamental research and applied physics. The combined acceleration mechanism based on radiation pressure acceleration has made great progress in obtaining high-energy protons. However, Rayleigh–Taylor instability (RTI) is still a potential influencing factor that will limit the quality of high-energy proton beams. Different from the previous suppression and neglect of RTI, this paper introduces a parabolic density plasma channel to accelerate protons by virtue of the characteristics of RTI. Three-dimensional Particle-in-cell simulations reveal that this scheme achieves high-energy protons with cut-off energy of 39 <span>\\(\\textrm{GeV}\\)</span>, total charge of 0.97 <span>\\(\\textrm{nC}\\)</span>, and the emittance of 1.12 <span>\\(\\mathrm{{mm}}\\;\\mathrm{{mrad}}\\)</span> in both the <i>y</i> and <i>z</i> directions. There are locally distributed electrons in the parabolic density plasma channel, and the focusing field around them can effectively focus protons. Compared with the uniform density plasma channel, the parabolic density plasma channel can significantly improve the quality of the proton beam, which could offer significant guidance for the generation and application of high-energy proton beams.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"79 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-025-00977-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

High-energy proton beams are essential for fundamental research and applied physics. The combined acceleration mechanism based on radiation pressure acceleration has made great progress in obtaining high-energy protons. However, Rayleigh–Taylor instability (RTI) is still a potential influencing factor that will limit the quality of high-energy proton beams. Different from the previous suppression and neglect of RTI, this paper introduces a parabolic density plasma channel to accelerate protons by virtue of the characteristics of RTI. Three-dimensional Particle-in-cell simulations reveal that this scheme achieves high-energy protons with cut-off energy of 39 \(\textrm{GeV}\), total charge of 0.97 \(\textrm{nC}\), and the emittance of 1.12 \(\mathrm{{mm}}\;\mathrm{{mrad}}\) in both the y and z directions. There are locally distributed electrons in the parabolic density plasma channel, and the focusing field around them can effectively focus protons. Compared with the uniform density plasma channel, the parabolic density plasma channel can significantly improve the quality of the proton beam, which could offer significant guidance for the generation and application of high-energy proton beams.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在调制等离子体通道中通过联合辐射压力加速和激光尾流场加速产生高能质子束
高能质子束对于基础研究和应用物理学是必不可少的。基于辐射压力加速的组合加速机制在获得高能质子方面取得了很大进展。然而,瑞利-泰勒不稳定性(RTI)仍然是限制高能质子束质量的潜在影响因素。不同于以往对RTI的抑制和忽视,本文引入了抛物线密度等离子体通道,利用RTI的特性对质子进行加速。三维细胞内粒子模拟结果表明,该方案在y和z方向上均可获得截止能量为39 \(\textrm{GeV}\)、总电荷为0.97 \(\textrm{nC}\)、发射度为1.12 \(\mathrm{{mm}}\;\mathrm{{mrad}}\)的高能质子。抛物密度等离子体通道中存在局部分布的电子,它们周围的聚焦场可以有效地聚焦质子。与均匀密度等离子体通道相比,抛物密度等离子体通道能显著提高质子束质量,对高能质子束的产生和应用具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
期刊最新文献
Atomic determination of the nuclear quadrupole moment \(\textrm{Q}(^{209}\textrm{Bi})\) using the multi-configuration Dirac–Hartree–Fock method Calculations of positron scattering from beryllium and beryllium oxide Influence of plasma screening and external fields on the spectroscopic characteristics of Li-like Al XI ion Dynamics of nonlinear wave of the (3+1)-dimensional Date–Jimbo–Kashiwara–Miwa equation with variable coefficients in inhomogeneous media Fractal dimension and structural evolution in a modified dispersive water wave system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1