Influence of Non-Uniform Temperature Distribution on Elastoplastic Deformation of Windings

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Electric Power Applications Pub Date : 2025-04-01 DOI:10.1049/elp2.70023
Jiajun Kou, Dongyang Li, Gang Liu, Wenxuan Zhou, Yunpeng Liu, Shuguo Gao, Haoyu Liu
{"title":"Influence of Non-Uniform Temperature Distribution on Elastoplastic Deformation of Windings","authors":"Jiajun Kou,&nbsp;Dongyang Li,&nbsp;Gang Liu,&nbsp;Wenxuan Zhou,&nbsp;Yunpeng Liu,&nbsp;Shuguo Gao,&nbsp;Haoyu Liu","doi":"10.1049/elp2.70023","DOIUrl":null,"url":null,"abstract":"<p>To accurately analyse the deformation of transformer windings under short-circuit conditions, a three-dimensional multiphysics field simulation model of the magnetic-fluid-thermal-structural coupling is constructed. The current magnitude under rated and short-circuit conditions of the transformer are calculated, the magnetic field distribution is obtained based on the current, and the loss is calculated as the heat source for temperature simulation. The temperature distribution results and short-circuit electromagnetic force are used as initial conditions for structural field simulation to analyse the elastic-plastic deformation, residual stress, and residual deformation of the winding under short-circuit impact. Considering the non-uniform distribution of winding temperature, compared with the results of the uniform temperature distribution, the maximum plastic strain of the winding increases by 84.6% after being subjected to short-circuit impact. The position of the wire cake where the maximum residual stress and residual deformation of the winding are located is different, and the values increase by 13.5% and 95.3%, respectively. Therefore, considering the non-uniform temperature distribution during the simulation process is more closely related to the actual working conditions, and thus more accurate in obtaining the location where cumulative deformation occurs.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/elp2.70023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To accurately analyse the deformation of transformer windings under short-circuit conditions, a three-dimensional multiphysics field simulation model of the magnetic-fluid-thermal-structural coupling is constructed. The current magnitude under rated and short-circuit conditions of the transformer are calculated, the magnetic field distribution is obtained based on the current, and the loss is calculated as the heat source for temperature simulation. The temperature distribution results and short-circuit electromagnetic force are used as initial conditions for structural field simulation to analyse the elastic-plastic deformation, residual stress, and residual deformation of the winding under short-circuit impact. Considering the non-uniform distribution of winding temperature, compared with the results of the uniform temperature distribution, the maximum plastic strain of the winding increases by 84.6% after being subjected to short-circuit impact. The position of the wire cake where the maximum residual stress and residual deformation of the winding are located is different, and the values increase by 13.5% and 95.3%, respectively. Therefore, considering the non-uniform temperature distribution during the simulation process is more closely related to the actual working conditions, and thus more accurate in obtaining the location where cumulative deformation occurs.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非均匀温度分布对绕组弹塑性变形的影响
为了准确分析变压器绕组在短路条件下的变形,建立了磁流-热-结构耦合的三维多物理场仿真模型。计算变压器在额定工况和短路工况下的电流大小,根据电流得到磁场分布,并计算损耗作为温度模拟的热源。以温度分布结果和短路电磁力为初始条件进行结构场模拟,分析绕组在短路冲击下的弹塑性变形、残余应力和残余变形。考虑绕组温度的不均匀分布,与温度均匀分布的结果相比,绕组受到短路冲击后的最大塑性应变增加了84.6%。绕组最大残余应力和残余变形所在的线饼位置不同,其值分别增加13.5%和95.3%。因此,在模拟过程中考虑温度分布的不均匀性更贴近实际工况,从而更准确地获得累积变形发生的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Electric Power Applications
Iet Electric Power Applications 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.90%
发文量
104
审稿时长
3 months
期刊介绍: IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear. The scope of the journal includes the following: The design and analysis of motors and generators of all sizes Rotating electrical machines Linear machines Actuators Power transformers Railway traction machines and drives Variable speed drives Machines and drives for electrically powered vehicles Industrial and non-industrial applications and processes Current Special Issue. Call for papers: Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf
期刊最新文献
A New Data Augmentation Model for Fault Diagnosis of Transformer Windings Under Scarce Fault Data Performance Improvement of PMSG-Based Wind Energy Systems via Sensorless FS-Predictive Current Control With MRAS and MPPT-OTC Integration A Comparative Investigation of the Performance of Vernier Generators With Open-Slot and Split-Tooth Stator Configurations With a Focus on Improving Torque Ripple and Power Factor Guest Editorial: Reliability Oriented Electrical Machine Systems: Topology, Design, Monitoring, Diagnostic Techniques, and Control Transformer Capacity Configuration Optimisation Considering Multi-Dimensional Interaction Characteristics of User-Side Resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1