Towards a more accurate and reliable evaluation of machine learning protein-protein interaction prediction model performance in the presence of unavoidable dataset biases.

IF 1.8 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Integrative Bioinformatics Pub Date : 2025-04-02 eCollection Date: 2025-06-01 DOI:10.1515/jib-2024-0054
Alba Nogueira-Rodríguez, Daniel Glez-Peña, Cristina P Vieira, Jorge Vieira, Hugo López-Fernández
{"title":"Towards a more accurate and reliable evaluation of machine learning protein-protein interaction prediction model performance in the presence of unavoidable dataset biases.","authors":"Alba Nogueira-Rodríguez, Daniel Glez-Peña, Cristina P Vieira, Jorge Vieira, Hugo López-Fernández","doi":"10.1515/jib-2024-0054","DOIUrl":null,"url":null,"abstract":"<p><p>The characterization of protein-protein interactions (PPIs) is fundamental to understand cellular functions. Although machine learning methods in this task have historically reported prediction accuracies up to 95 %, including those only using raw protein sequences, it has been highlighted that this could be overestimated due to the use of random splits and metrics that do not take into account potential biases in the datasets. Here, we propose a per-protein utility metric, pp_MCC, able to show a drop in the performance in both random and unseen-protein splits scenarios. We tested ML models based on sequence embeddings. The pp_MCC metric evidences a reduced performance even in a random split, reaching levels similar to those shown by the raw MCC metric computed over an unseen protein split, and drops even further when the pp_MCC is used in an unseen protein split scenario. Thus, the metric is able to give a more realistic performance estimation while allowing to use random splits, which could be interesting for more protein-centric studies. Given the low adjusted performance obtained, there seems to be room for improvement when using only primary sequence information, suggesting the need of inclusion of complementary protein data, accompanied with the use of the pp_MCC metric.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12569588/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2024-0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The characterization of protein-protein interactions (PPIs) is fundamental to understand cellular functions. Although machine learning methods in this task have historically reported prediction accuracies up to 95 %, including those only using raw protein sequences, it has been highlighted that this could be overestimated due to the use of random splits and metrics that do not take into account potential biases in the datasets. Here, we propose a per-protein utility metric, pp_MCC, able to show a drop in the performance in both random and unseen-protein splits scenarios. We tested ML models based on sequence embeddings. The pp_MCC metric evidences a reduced performance even in a random split, reaching levels similar to those shown by the raw MCC metric computed over an unseen protein split, and drops even further when the pp_MCC is used in an unseen protein split scenario. Thus, the metric is able to give a more realistic performance estimation while allowing to use random splits, which could be interesting for more protein-centric studies. Given the low adjusted performance obtained, there seems to be room for improvement when using only primary sequence information, suggesting the need of inclusion of complementary protein data, accompanied with the use of the pp_MCC metric.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不可避免的数据集偏差存在的情况下,对机器学习蛋白质-蛋白质相互作用预测模型的性能进行更准确和可靠的评估。
蛋白质-蛋白质相互作用(PPIs)的表征是理解细胞功能的基础。尽管该任务中的机器学习方法历史上报告的预测精度高达95% %,包括那些仅使用原始蛋白质序列的方法,但由于使用随机分割和不考虑数据集中潜在偏差的指标,这可能被高估了。在这里,我们提出了一个每蛋白质效用度量,pp_MCC,能够显示在随机和不可见的蛋白质分裂情况下的性能下降。我们测试了基于序列嵌入的ML模型。即使在随机分裂中,pp_MCC指标也会降低性能,达到与在不可见的蛋白质分裂中计算的原始MCC指标所显示的水平相似,并且在不可见的蛋白质分裂场景中使用pp_MCC时性能会进一步下降。因此,在允许使用随机分割的同时,该度量能够给出更现实的性能估计,这对于更多以蛋白质为中心的研究可能会很有趣。考虑到所获得的低调整性能,当仅使用初级序列信息时似乎有改进的空间,这表明需要包括补充蛋白质数据,同时使用pp_MCC指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
Streamlining feature elaboration and statistics analysis in metabolomics: the GetFeatistics R-package. Colon cancer survival prediction from gland shapes within histology slides using deep learning. Editorial - 20 years Journal of Integrative Bioinformatics. Sustainable software development in science - insights from 20 years of Vanted. Metagenome and metabolome study on inhaled corticosteroids in asthma patients with side effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1