Structural and Practical Identifiability of Phenomenological Growth Models for Epidemic Forecasting.

ArXiv Pub Date : 2025-03-27
Yuganthi R Liyanage, Gerardo Chowell, Gleb Pogudin, Necibe Tuncer
{"title":"Structural and Practical Identifiability of Phenomenological Growth Models for Epidemic Forecasting.","authors":"Yuganthi R Liyanage, Gerardo Chowell, Gleb Pogudin, Necibe Tuncer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Phenomenological models are highly effective tools for forecasting disease dynamics using real-world data, particularly in scenarios where detailed knowledge of disease mechanisms is limited. However, their reliability depends on the model parameters' structural and practical identifiability. In this study, we systematically analyze the identifiability of six commonly used growth models in epidemiology: the generalized growth model (GGM), the generalized logistic model (GLM), the Richards model, the generalized Richards model (GRM), the Gompertz model, and a modified SEIR model with inhomogeneous mixing. To address challenges posed by non-integer power exponents in these models, we reformulate them by introducing additional state variables. This enables rigorous structural identifiability analysis using the StructuralIdentifiability.jl package in JULIA. We validate the structural identifiability results by performing parameter estimation and forecasting using the <i>GrowthPredict</i> MATLAB toolbox. This toolbox is designed to fit and forecast time-series trajectories based on phenomenological growth models. We applied it to three epidemiological datasets: weekly incidence data for monkeypox, COVID-19, and Ebola. Additionally, we assess practical identifiability through Monte Carlo simulations to evaluate parameter estimation robustness under varying levels of observational noise. Our results confirm that all six models are structurally identifiable under the proposed reformulation. Furthermore, practical identifiability analyses demonstrate that parameter estimates remain robust across different noise levels, though sensitivity varies by model and dataset. These findings provide critical insights into the strengths and limitations of phenomenological models to characterize epidemic trajectories, emphasizing their adaptability to real-world challenges and their role in informing public health interventions.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phenomenological models are highly effective tools for forecasting disease dynamics using real-world data, particularly in scenarios where detailed knowledge of disease mechanisms is limited. However, their reliability depends on the model parameters' structural and practical identifiability. In this study, we systematically analyze the identifiability of six commonly used growth models in epidemiology: the generalized growth model (GGM), the generalized logistic model (GLM), the Richards model, the generalized Richards model (GRM), the Gompertz model, and a modified SEIR model with inhomogeneous mixing. To address challenges posed by non-integer power exponents in these models, we reformulate them by introducing additional state variables. This enables rigorous structural identifiability analysis using the StructuralIdentifiability.jl package in JULIA. We validate the structural identifiability results by performing parameter estimation and forecasting using the GrowthPredict MATLAB toolbox. This toolbox is designed to fit and forecast time-series trajectories based on phenomenological growth models. We applied it to three epidemiological datasets: weekly incidence data for monkeypox, COVID-19, and Ebola. Additionally, we assess practical identifiability through Monte Carlo simulations to evaluate parameter estimation robustness under varying levels of observational noise. Our results confirm that all six models are structurally identifiable under the proposed reformulation. Furthermore, practical identifiability analyses demonstrate that parameter estimates remain robust across different noise levels, though sensitivity varies by model and dataset. These findings provide critical insights into the strengths and limitations of phenomenological models to characterize epidemic trajectories, emphasizing their adaptability to real-world challenges and their role in informing public health interventions.

Abstract Image

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流行病预测的现象学增长模型的结构和实际可识别性。
现象学模型是利用真实世界数据预测疾病动态的非常有效的工具,特别是在对疾病机制的详细了解有限的情况下。然而,它们的可靠性取决于模型参数的结构和实际可识别性。本文系统分析了流行病学中常用的6种生长模型的可识别性:广义生长模型、广义logistic模型、Richards模型、广义Richards模型、Gompertz模型和一种改进的非均匀混合SEIR模型。为了解决这些模型中非整数幂指数带来的挑战,我们通过引入额外的状态变量来重新表述它们。这使得使用StructuralIdentifiability进行严格的结构可识别性分析成为可能。JULIA中的jl包。我们通过使用GrowthPredict MATLAB工具箱进行参数估计和预测来验证结构可识别性结果。这个工具箱旨在拟合和预测基于现象学增长模型的时间序列轨迹。我们将其应用于三个流行病学数据集:猴痘、COVID - 19和埃博拉的每周发病率数据。此外,我们通过蒙特卡罗模拟评估实际可识别性,以评估参数估计在不同水平的观测噪声下的鲁棒性。我们的研究结果证实,所有六个模型在结构上是可识别的。此外,实际的可识别性分析表明,参数估计在不同的噪声水平上仍然保持鲁棒性,尽管灵敏度因模型和数据集而异。这些发现对现象学模型表征流行病轨迹的优势和局限性提供了重要见解,强调了它们对现实世界挑战的适应性及其在为公共卫生干预提供信息方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proton therapy range uncertainty reduction using vendor-agnostic tissue characterization on a virtual photon-counting CT head scan. Human-like AI-based Auto-Field-in-Field Whole-Brain Radiotherapy Treatment Planning With Conversation Large Language Model Feedback. MethConvTransformer: A Deep Learning Framework for Cross-Tissue Alzheimer's Disease Detection. Non-dilemmatic social dynamics promote cooperation in multilayer networks. Computational Analysis of Disease Progression in Pediatric Pulmonary Arterial Hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1