3D printing cytoskeletal networks: ROS-induced filament severing leads to surge in actin polymerization.

Thomas Litschel, Dimitrios Vavylonis, David A Weitz
{"title":"3D printing cytoskeletal networks: ROS-induced filament severing leads to surge in actin polymerization.","authors":"Thomas Litschel, Dimitrios Vavylonis, David A Weitz","doi":"10.1101/2025.03.19.644260","DOIUrl":null,"url":null,"abstract":"<p><p>The cytoskeletal protein actin forms a spatially organized biopolymer network that plays a central role in many cellular processes. Actin filaments continuously assemble and disassemble, enabling cells to rapidly reorganize their cytoskeleton. Filament severing accelerates actin turnover, as both polymerization and depolymerization rates depend on the number of free filament ends. Here, we use light to control actin severing in vitro by locally generating reactive oxygen species (ROS) with photosensitive molecules such as fluorophores. We see that ROS sever actin filaments, which increases actin polymerization in our experiments. However, beyond a certain threshold, excessive severing leads to the disassembly of actin networks, allowing us to selectively remove actin structures. Our experimental data is supported by simulations using a kinetic model of actin polymerization, which helps us understand the underlying dynamics. In cells, ROS are known to regulate the actin cytoskeleton, but the molecular mechanisms are poorly understood. Here we show that, in vitro, ROS directly affect actin reorganization.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957145/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.19.644260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cytoskeletal protein actin forms a spatially organized biopolymer network that plays a central role in many cellular processes. Actin filaments continuously assemble and disassemble, enabling cells to rapidly reorganize their cytoskeleton. Filament severing accelerates actin turnover, as both polymerization and depolymerization rates depend on the number of free filament ends. Here, we use light to control actin severing in vitro by locally generating reactive oxygen species (ROS) with photosensitive molecules such as fluorophores. We see that ROS sever actin filaments, which increases actin polymerization in our experiments. However, beyond a certain threshold, excessive severing leads to the disassembly of actin networks, allowing us to selectively remove actin structures. Our experimental data is supported by simulations using a kinetic model of actin polymerization, which helps us understand the underlying dynamics. In cells, ROS are known to regulate the actin cytoskeleton, but the molecular mechanisms are poorly understood. Here we show that, in vitro, ROS directly affect actin reorganization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D 打印细胞骨架网络:ROS 诱导的丝切断导致肌动蛋白聚合激增
细胞骨架蛋白肌动蛋白形成一个空间组织的生物聚合物网络,在许多细胞过程中起着核心作用。肌动蛋白丝不断地组装和拆卸,使细胞能够快速重组其细胞骨架。丝的切断加速了肌动蛋白的周转,因为聚合和解聚速率都取决于自由丝末端的数量,而自由丝末端的切断增加了。在这里,我们利用光来控制肌动蛋白的体外切断,通过局部产生活性氧(ROS)与光敏分子,如荧光团。在我们的实验中,我们看到ROS切断肌动蛋白丝,这增加了肌动蛋白聚合。然而,超过一定的阈值,过度的切断会导致肌动蛋白网络的解体。我们的实验数据得到了肌动蛋白聚合动力学模型模拟的支持,这有助于我们理解潜在的动力学。在细胞中,已知ROS调节肌动蛋白细胞骨架,但其分子机制尚不清楚。在这里,我们表明,在体外,ROS直接影响肌动蛋白重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Glucocorticoid Burden in Lupus with Omega-3 Fatty Acids: Docosahexaenoic Acid Augments Prednisone Efficacy in Maintaining Cyclophosphamide-Induced Remission of Preclinical Lupus Nephritis. SegJointGene: joint cell segmentation and spatial gene prioritization by information entropy guided convolutional neural networks. Cell cycle-dependent transitions in PCP protein mobility erase and restore planar cell polarity in mitosis. Dual-mode ClfA-targeting DARPin biologics protect against diverse methicillin-resistant Staphylococcus aureus strains. HDI-STARR-seq Identifies Functional GH-regulated Sex-Biased Hepatocyte Enhancers Linked to Liver Metabolism and Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1