Improved self-rectifying characteristics observed in ZnO/IGZO bilayer RRAM cells using eco-friendly indirect post-treatment

IF 7.9 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2025-04-01 DOI:10.1016/j.mtsust.2025.101105
Myoungsu Chae , Yuseong Jang , Doowon Lee , Hee-Dong Kim
{"title":"Improved self-rectifying characteristics observed in ZnO/IGZO bilayer RRAM cells using eco-friendly indirect post-treatment","authors":"Myoungsu Chae ,&nbsp;Yuseong Jang ,&nbsp;Doowon Lee ,&nbsp;Hee-Dong Kim","doi":"10.1016/j.mtsust.2025.101105","DOIUrl":null,"url":null,"abstract":"<div><div>Research on transparent RRAM (T-RRAM) is imperative for achieving high integration levels, necessitating the resolution of interference issues arising from sneak-path currents in the array. Here, we propose a fully transparent ITO/ZnO/IGZO/ITO device structure featuring a ZnO resistive switching (RS) layer and an IGZO rectifying layer, as well as an eco-friendly indirect treatment method, i.e., microwave treatment (MWT), demonstrating self-rectifying RS characteristics capable of overcoming interference problems without supplementary elements. In detail, the proposed T-RRAM exhibits superior transmittance (&gt;80 %) in the visible region, uniform RS of &gt;10<sup>2</sup> cycles, and stable retention for &gt;10<sup>4</sup> s. The device particularly showed a read margin of 1,700, indicating the reliable operation of RS up to 41 × 41 without any degradation in the array structure. These findings suggest the potential for developing superior rectification properties for eco-friendly advanced industries by incorporating ZnO/IGZO bilayers and the post-MWT method.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"30 ","pages":"Article 101105"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258923472500034X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Research on transparent RRAM (T-RRAM) is imperative for achieving high integration levels, necessitating the resolution of interference issues arising from sneak-path currents in the array. Here, we propose a fully transparent ITO/ZnO/IGZO/ITO device structure featuring a ZnO resistive switching (RS) layer and an IGZO rectifying layer, as well as an eco-friendly indirect treatment method, i.e., microwave treatment (MWT), demonstrating self-rectifying RS characteristics capable of overcoming interference problems without supplementary elements. In detail, the proposed T-RRAM exhibits superior transmittance (>80 %) in the visible region, uniform RS of >102 cycles, and stable retention for >104 s. The device particularly showed a read margin of 1,700, indicating the reliable operation of RS up to 41 × 41 without any degradation in the array structure. These findings suggest the potential for developing superior rectification properties for eco-friendly advanced industries by incorporating ZnO/IGZO bilayers and the post-MWT method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用生态友好的间接后处理,改善了ZnO/IGZO双层RRAM电池的自整流特性
透明RRAM (T-RRAM)的研究是实现高集成度的必要条件,需要解决阵列中由潜行路径电流引起的干扰问题。在这里,我们提出了一种全透明的ITO/ZnO/IGZO/ITO器件结构,该结构具有ZnO电阻开关(RS)层和IGZO整流层,以及一种环保的间接处理方法,即微波处理(MWT),展示了能够克服干扰问题的自整流RS特性,无需补充元件。结果表明,T-RRAM在可见光区具有优异的透光率(80%),均匀的RS为102个周期,保持时间为104 s。该装置特别显示了1,700的读取余量,表明RS在高达41 × 41的情况下可靠运行,而阵列结构没有任何退化。这些发现表明,通过结合ZnO/IGZO双分子层和后mwt方法,可以为环保先进工业开发优越的整流性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Assessing the sustainability potential of circular geopolymer concrete: A life cycle assessment and multi-criteria decision making approach Towards efficient production and application of bacterial cellulose: the progress from conventional to advanced production Advances in green synthesis of nanoparticles for biomedical applications: Antimicrobial, antiviral, and cancer therapies Optimizing carbon sequestration and performance of a sustainable gypsum-based materials using steel slag waste Agro-food waste upcycling into mycelium insulation: Linking structure with mechanical and fire performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1