Electrical activity of aluminum, boron, and n-type impurities defect-complexes in germanium: Implications for enhanced Ge-based devices

IF 1.8 4区 化学 Q3 CHEMISTRY, PHYSICAL Surface Science Pub Date : 2025-03-29 DOI:10.1016/j.susc.2025.122742
Emmanuel Igumbor , Edwin Mapasha , Abdulrafiu Tunde Raji , Ezekiel Omotoso
{"title":"Electrical activity of aluminum, boron, and n-type impurities defect-complexes in germanium: Implications for enhanced Ge-based devices","authors":"Emmanuel Igumbor ,&nbsp;Edwin Mapasha ,&nbsp;Abdulrafiu Tunde Raji ,&nbsp;Ezekiel Omotoso","doi":"10.1016/j.susc.2025.122742","DOIUrl":null,"url":null,"abstract":"<div><div>Studies on point defects in germanium (Ge) are increasing, primarily because these defects have the potential to modify the electronic and optical properties of Ge, thereby enhancing device applications. While significant progress has been made in defect studies, a comprehensive understanding of defect complexes resulting from interactions between <span><math><mi>p</mi></math></span>-type (Al or B) and <span><math><mi>n</mi></math></span>-type atoms (D<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> and D<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>; where D = Al, B, and X = N, P, As, Sb) is still lacking. Therefore density functional theory calculations of electrically active defect levels in Ge that are caused by interactions between <span><math><mi>n</mi></math></span>-type impurity atoms and Al or B, are presented. For defect-complexes formed by Al and <span><math><mi>n</mi></math></span>-type atoms, Al and P exhibit the highest formation stability under equilibrium conditions. Conversely, B<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>P<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> represents the most energetically favorable defect-complex. With the exception of B<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>, the energetic stability of all defect-complexes suggests that Al and B interstitials form strong bonds with <span><math><mi>n</mi></math></span>-type substitutional atoms. Electrical behavior analyses of these defects reveal that defect-complexes formed by Al and <span><math><mi>n</mi></math></span>-type atoms induce deep defect levels. Specifically, Al<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> acts as an acceptor, while Al<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span> behaves as a donor. The defects B<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>Sb<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>, B<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>P<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>, and B<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span> donate electrons to the conduction band at energy levels within the range of 3 <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span>. Furthermore, B<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>Sb<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> induces shallow donor levels, whereas B<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>P<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> induces acceptor levels. This study opens new research opportunities in the experimental synthesis of defects and offers insights into controlling them, potentially enhancing electronic devices.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"758 ","pages":"Article 122742"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825000494","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Studies on point defects in germanium (Ge) are increasing, primarily because these defects have the potential to modify the electronic and optical properties of Ge, thereby enhancing device applications. While significant progress has been made in defect studies, a comprehensive understanding of defect complexes resulting from interactions between p-type (Al or B) and n-type atoms (DGeXi and DiXGe; where D = Al, B, and X = N, P, As, Sb) is still lacking. Therefore density functional theory calculations of electrically active defect levels in Ge that are caused by interactions between n-type impurity atoms and Al or B, are presented. For defect-complexes formed by Al and n-type atoms, Al and P exhibit the highest formation stability under equilibrium conditions. Conversely, BGePi represents the most energetically favorable defect-complex. With the exception of BGeNi, the energetic stability of all defect-complexes suggests that Al and B interstitials form strong bonds with n-type substitutional atoms. Electrical behavior analyses of these defects reveal that defect-complexes formed by Al and n-type atoms induce deep defect levels. Specifically, AlGeNi acts as an acceptor, while AliAsGe behaves as a donor. The defects BGeSbi, BiPGe, and BiAsGe donate electrons to the conduction band at energy levels within the range of 3 kBT. Furthermore, BGeSbi induces shallow donor levels, whereas BGePi induces acceptor levels. This study opens new research opportunities in the experimental synthesis of defects and offers insights into controlling them, potentially enhancing electronic devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锗中铝、硼和n型杂质缺陷复合物的电活性:对增强ge基器件的影响
对锗(Ge)中点缺陷的研究越来越多,主要是因为这些缺陷有可能改变锗的电子和光学性质,从而增强器件的应用。虽然缺陷研究取得了重大进展,但对p型(Al或B)和n型原子(DGeXi和DiXGe)之间相互作用产生的缺陷复合物的全面理解;其中D = Al, B, X = N, P, As, Sb)仍然缺乏。因此,提出了由n型杂质原子与Al或B之间的相互作用引起的锗电活性缺陷水平的密度泛函理论计算。对于由Al和n型原子形成的缺陷配合物,Al和P在平衡条件下表现出最高的形成稳定性。相反,BGePi代表能量上最有利的缺陷复合物。除BGeNi外,所有缺陷配合物的能量稳定性表明Al和B间质与n型取代原子形成强键。这些缺陷的电学行为分析表明,由Al和n型原子形成的缺陷复合物诱导深度缺陷水平。具体来说,AlGeNi充当受体,而AliAsGe充当供体。BGeSbi、BiPGe和BiAsGe缺陷在3 kBT的能级范围内向导带提供电子。此外,BGeSbi诱导浅供体水平,而BGePi诱导受体水平。这项研究为缺陷的实验合成开辟了新的研究机会,并为控制它们提供了见解,潜在地增强了电子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
期刊最新文献
Aldol condensation of acetaldehyde on oxidized and sputtered Mo(100) surfaces In-situ atom probe analysis of field-assisted etching of tungsten in O2 and H2O Editorial Board Growth, structure, and morphology of ultra-thin tin oxide phases forming on Pt3Sn(111) single crystals upon exposure to oxygen The synergistic effect of W-modification and oxygen vacancies on ZnO for detecting NO2: A DFT study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1