{"title":"Self-supervised simultaneous deblending and interpolation of incomplete blended data using a multistep blind-trace U-Net","authors":"Ben-Feng Wang, Shi-Cong Lin, Xin-Yi Chen","doi":"10.1016/j.petsci.2024.12.023","DOIUrl":null,"url":null,"abstract":"<div><div>Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing shots caused by artificial or natural effects during blended acquisition. Therefore, blending noise attenuation and missing shots reconstruction are essential for providing high-quality seismic data for further seismic processing and interpretation. The iterative shrinkage thresholding algorithm can help obtain deblended data based on sparsity assumptions of complete unblended data, and it characterizes seismic data linearly. Supervised learning algorithms can effectively capture the nonlinear relationship between incomplete pseudo-deblended data and complete unblended data. However, the dependence on complete unblended labels limits their practicality in field applications. Consequently, a self-supervised algorithm is presented for simultaneous deblending and interpolation of incomplete blended data, which minimizes the difference between simulated and observed incomplete pseudo-deblended data. The used blind-trace U-Net (BTU-Net) prevents identity mapping during complete unblended data estimation. Furthermore, a multistep process with blending noise simulation-subtraction and missing traces reconstruction-insertion is used in each step to improve the deblending and interpolation performance. Experiments with synthetic and field incomplete blended data demonstrate the effectiveness of the multistep self-supervised BTU-Net algorithm.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"22 3","pages":"Pages 1098-1109"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624003443","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Blended acquisition offers efficiency improvements over conventional seismic data acquisition, at the cost of introducing blending noise effects. Besides, seismic data often suffers from irregularly missing shots caused by artificial or natural effects during blended acquisition. Therefore, blending noise attenuation and missing shots reconstruction are essential for providing high-quality seismic data for further seismic processing and interpretation. The iterative shrinkage thresholding algorithm can help obtain deblended data based on sparsity assumptions of complete unblended data, and it characterizes seismic data linearly. Supervised learning algorithms can effectively capture the nonlinear relationship between incomplete pseudo-deblended data and complete unblended data. However, the dependence on complete unblended labels limits their practicality in field applications. Consequently, a self-supervised algorithm is presented for simultaneous deblending and interpolation of incomplete blended data, which minimizes the difference between simulated and observed incomplete pseudo-deblended data. The used blind-trace U-Net (BTU-Net) prevents identity mapping during complete unblended data estimation. Furthermore, a multistep process with blending noise simulation-subtraction and missing traces reconstruction-insertion is used in each step to improve the deblending and interpolation performance. Experiments with synthetic and field incomplete blended data demonstrate the effectiveness of the multistep self-supervised BTU-Net algorithm.
期刊介绍:
Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.