Examining the adsorption and sensing characteristics of cytosine (CTE) on Y9N9 (Y = Al, B, Ga) nanorings using solvent effects, DFT, AIM and SERS analyses
Jamelah S. Al-Otaibi , Y. Sheena Mary , Unnati Jethawa , Brahmananda Chakraborty , Maria Cristina Gamberini
{"title":"Examining the adsorption and sensing characteristics of cytosine (CTE) on Y9N9 (Y = Al, B, Ga) nanorings using solvent effects, DFT, AIM and SERS analyses","authors":"Jamelah S. Al-Otaibi , Y. Sheena Mary , Unnati Jethawa , Brahmananda Chakraborty , Maria Cristina Gamberini","doi":"10.1016/j.saa.2025.126148","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleobases are nitrogenous biological compounds that are more significant in a range of biological and in medical applications. They are constituents of nucleotides in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Therefore, we assessed the sensing applicability by studying the cytosine (CTE)-Y<sub>9</sub>N<sub>9</sub> (Y = Al, B, Ga) nanoring interaction using density functional theory. It was evident that CTE interacted strongly with each ring. Due to charge transfer between the nanoring and CTE, a dipole moment (DM) is generated. All complexes have band gaps less than that of CTE. Complexes’ band gap energies are lower in aqueous phase and vacuum than they are in pristine rings. All complexes exhibit higher adsorption energies in solvent medium in comparison with that in vacuum. Changes in the frontier molecular orbitals (FMOs) energies of nanorings after interaction have a major impact on their electrical conductivity and work function. In addition to being an electrical sensor, the Y<sub>9</sub>N<sub>9</sub> nanorings for CTE can also be utilized as a work function-based sensor. But Y<sub>9</sub>N<sub>9</sub>′s CTE recovery time indicates that it can be used to extract or store CTE depending on the environment. The current work can be expanded to examine the impact of Ag/Au/Cu doping using Y<sub>9</sub>N<sub>9</sub> in order to examine the characteristics of drug delivery carriers and the consequence of doping. The interaction between the analyte and substrate was further studied using reduced density gradient (RDG) analysis, comparing the nature and strength of the interaction in both vacuum and aqueous medium. The observations revealed a stronger interaction in the presence of an aqueous medium, which aligns with the higher adsorption energy values.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"337 ","pages":"Article 126148"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525004548","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleobases are nitrogenous biological compounds that are more significant in a range of biological and in medical applications. They are constituents of nucleotides in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Therefore, we assessed the sensing applicability by studying the cytosine (CTE)-Y9N9 (Y = Al, B, Ga) nanoring interaction using density functional theory. It was evident that CTE interacted strongly with each ring. Due to charge transfer between the nanoring and CTE, a dipole moment (DM) is generated. All complexes have band gaps less than that of CTE. Complexes’ band gap energies are lower in aqueous phase and vacuum than they are in pristine rings. All complexes exhibit higher adsorption energies in solvent medium in comparison with that in vacuum. Changes in the frontier molecular orbitals (FMOs) energies of nanorings after interaction have a major impact on their electrical conductivity and work function. In addition to being an electrical sensor, the Y9N9 nanorings for CTE can also be utilized as a work function-based sensor. But Y9N9′s CTE recovery time indicates that it can be used to extract or store CTE depending on the environment. The current work can be expanded to examine the impact of Ag/Au/Cu doping using Y9N9 in order to examine the characteristics of drug delivery carriers and the consequence of doping. The interaction between the analyte and substrate was further studied using reduced density gradient (RDG) analysis, comparing the nature and strength of the interaction in both vacuum and aqueous medium. The observations revealed a stronger interaction in the presence of an aqueous medium, which aligns with the higher adsorption energy values.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.