Examining the adsorption and sensing characteristics of cytosine (CTE) on Y9N9 (Y = Al, B, Ga) nanorings using solvent effects, DFT, AIM and SERS analyses

Jamelah S. Al-Otaibi , Y. Sheena Mary , Unnati Jethawa , Brahmananda Chakraborty , Maria Cristina Gamberini
{"title":"Examining the adsorption and sensing characteristics of cytosine (CTE) on Y9N9 (Y = Al, B, Ga) nanorings using solvent effects, DFT, AIM and SERS analyses","authors":"Jamelah S. Al-Otaibi ,&nbsp;Y. Sheena Mary ,&nbsp;Unnati Jethawa ,&nbsp;Brahmananda Chakraborty ,&nbsp;Maria Cristina Gamberini","doi":"10.1016/j.saa.2025.126148","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleobases are nitrogenous biological compounds that are more significant in a range of biological and in medical applications. They are constituents of nucleotides in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Therefore, we assessed the sensing applicability by studying the cytosine (CTE)-Y<sub>9</sub>N<sub>9</sub> (Y = Al, B, Ga) nanoring interaction using density functional theory. It was evident that CTE interacted strongly with each ring. Due to charge transfer between the nanoring and CTE, a dipole moment (DM) is generated. All complexes have band gaps less than that of CTE. Complexes’ band gap energies are lower in aqueous phase and vacuum than they are in pristine rings. All complexes exhibit higher adsorption energies in solvent medium in comparison with that in vacuum. Changes in the frontier molecular orbitals (FMOs) energies of nanorings after interaction have a major impact on their electrical conductivity and work function. In addition to being an electrical sensor, the Y<sub>9</sub>N<sub>9</sub> nanorings for CTE can also be utilized as a work function-based sensor. But Y<sub>9</sub>N<sub>9</sub>′s CTE recovery time indicates that it can be used to extract or store CTE depending on the environment. The current work can be expanded to examine the impact of Ag/Au/Cu doping using Y<sub>9</sub>N<sub>9</sub> in order to examine the characteristics of drug delivery carriers and the consequence of doping. The interaction between the analyte and substrate was further studied using reduced density gradient (RDG) analysis, comparing the nature and strength of the interaction in both vacuum and aqueous medium. The observations revealed a stronger interaction in the presence of an aqueous medium, which aligns with the higher adsorption energy values.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"337 ","pages":"Article 126148"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525004548","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleobases are nitrogenous biological compounds that are more significant in a range of biological and in medical applications. They are constituents of nucleotides in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Therefore, we assessed the sensing applicability by studying the cytosine (CTE)-Y9N9 (Y = Al, B, Ga) nanoring interaction using density functional theory. It was evident that CTE interacted strongly with each ring. Due to charge transfer between the nanoring and CTE, a dipole moment (DM) is generated. All complexes have band gaps less than that of CTE. Complexes’ band gap energies are lower in aqueous phase and vacuum than they are in pristine rings. All complexes exhibit higher adsorption energies in solvent medium in comparison with that in vacuum. Changes in the frontier molecular orbitals (FMOs) energies of nanorings after interaction have a major impact on their electrical conductivity and work function. In addition to being an electrical sensor, the Y9N9 nanorings for CTE can also be utilized as a work function-based sensor. But Y9N9′s CTE recovery time indicates that it can be used to extract or store CTE depending on the environment. The current work can be expanded to examine the impact of Ag/Au/Cu doping using Y9N9 in order to examine the characteristics of drug delivery carriers and the consequence of doping. The interaction between the analyte and substrate was further studied using reduced density gradient (RDG) analysis, comparing the nature and strength of the interaction in both vacuum and aqueous medium. The observations revealed a stronger interaction in the presence of an aqueous medium, which aligns with the higher adsorption energy values.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用溶剂效应、DFT、AIM和SERS分析研究了胞嘧啶(CTE)在Y9N9 (Y = Al, B, Ga)纳米片上的吸附和传感特性
核碱基是含氮生物化合物,在一系列生物学和医学应用中更为重要。它们是脱氧核糖核酸(DNA)和核糖核酸(RNA)中核苷酸的组成成分。因此,我们利用密度泛函理论研究胞嘧啶(CTE)-Y9N9 (Y = Al, B, Ga)纳米环相互作用,以评估其传感适用性。很明显,CTE与每个环都有很强的相互作用。由于纳米环和CTE之间的电荷转移,产生了偶极矩。所有配合物的带隙都小于CTE。配合物的带隙能在水相和真空中比在原始环中低。所有配合物在溶剂介质中的吸附能均高于在真空介质中的吸附能。纳米材料相互作用后前沿分子轨道(FMOs)能量的变化对其电导率和功函数有重要影响。除了作为一个电子传感器,Y9N9纳米CTE也可以用作一个基于工作函数的传感器。但Y9N9的CTE恢复时间表明,它可以根据环境提取或存储CTE。目前的工作可以扩展到使用Y9N9来检查Ag/Au/Cu掺杂的影响,以检查药物递送载体的特性和掺杂的后果。利用还原密度梯度(RDG)分析进一步研究了分析物与底物之间的相互作用,比较了真空和水介质中相互作用的性质和强度。观察结果显示,在水介质存在时,相互作用更强,这与较高的吸附能值一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
期刊最新文献
A mitochondria-targeted “turn-on” near-infrared fluorescent probe for imaging protein Sulfenic acids in live cells under oxidative stress Outside Front Cover Editorial Board Colorimetric and fluorometric dual-response system for rapid analysis of gentamicin in real samples Smartphone-integrated ratiometric fluorescent sensor based on Al-doped carbon dots for specific detection of chlortetracycline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1