A Fully 3-D-Printed Piezoresistive Bionic Seal Whisker Integrating Multiple Liquid Metal Tunnels for Enhanced Sensitivity in Hydrodynamic Flow Sensing

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2025-02-27 DOI:10.1109/JSEN.2025.3543614
Yanbo Xu;Zengxing Zhang;Weihong Ouyang;Jiangong Cui;Xingxu Zhang;Chenyang Xue
{"title":"A Fully 3-D-Printed Piezoresistive Bionic Seal Whisker Integrating Multiple Liquid Metal Tunnels for Enhanced Sensitivity in Hydrodynamic Flow Sensing","authors":"Yanbo Xu;Zengxing Zhang;Weihong Ouyang;Jiangong Cui;Xingxu Zhang;Chenyang Xue","doi":"10.1109/JSEN.2025.3543614","DOIUrl":null,"url":null,"abstract":"Fish use their lateral line organs to sense wake changes in the flow field environment to conduct hunting, avoidance, and communication activities. Seals efficiently enhance their sensitivity to prey’s wake-induced vibrations (WIVs) by suppressing vortex-induced vibrations (VIVs) with undulating whiskers. In this study, we proposed a fully 3-D-printed piezoresistive bionic flow sensor. The bionic whisker simulates the geometrical dimensions of a real gray harbor whisker. The piezoresistive sensing unit made of liquid metal simulates the synaptic electromechanical transitions of hair follicle cells to acquire flow field information. Uniform flow field experiments and simulation results revealed that the sensor can effectively suppress VIVs at an angle of attack (AOA) of 0° and achieve a minimum flow velocity of 0.03 m/s at AOA of 90°. The sensing unit’s directional arrangement realizes the discrimination of the flow direction. In addition, the sensor demonstrated to determine the wake generated by the upstream cylinders and direct information about the upstream cylinders. Therefore, the sensors’ experimental results of the bionic whisker sensor can be applied to underwater robots to perceive diverse flow field information.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 7","pages":"10811-10819"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10907784/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Fish use their lateral line organs to sense wake changes in the flow field environment to conduct hunting, avoidance, and communication activities. Seals efficiently enhance their sensitivity to prey’s wake-induced vibrations (WIVs) by suppressing vortex-induced vibrations (VIVs) with undulating whiskers. In this study, we proposed a fully 3-D-printed piezoresistive bionic flow sensor. The bionic whisker simulates the geometrical dimensions of a real gray harbor whisker. The piezoresistive sensing unit made of liquid metal simulates the synaptic electromechanical transitions of hair follicle cells to acquire flow field information. Uniform flow field experiments and simulation results revealed that the sensor can effectively suppress VIVs at an angle of attack (AOA) of 0° and achieve a minimum flow velocity of 0.03 m/s at AOA of 90°. The sensing unit’s directional arrangement realizes the discrimination of the flow direction. In addition, the sensor demonstrated to determine the wake generated by the upstream cylinders and direct information about the upstream cylinders. Therefore, the sensors’ experimental results of the bionic whisker sensor can be applied to underwater robots to perceive diverse flow field information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成多个液态金属隧道的全3d打印压阻式仿生密封须,以提高流体动力流量传感的灵敏度
鱼类利用侧线器官感知流场环境中尾流的变化,进行狩猎、躲避和交流活动。海豹通过波浪须抑制涡激振动(VIVs),有效地提高了它们对猎物尾迹振动(WIVs)的敏感性。在这项研究中,我们提出了一种全3d打印的压阻式仿生流量传感器。仿生须模拟了真实灰色港须的几何尺寸。由液态金属制成的压阻式传感单元模拟毛囊细胞的突触机电转换以获取流场信息。均匀流场实验和仿真结果表明,该传感器在迎角为0°时能有效抑制涡动,在迎角为90°时能达到0.03 m/s的最小流速。传感单元的定向布置实现了对流动方向的判别。此外,该传感器还可以确定上游气缸产生的尾流,并直接获取上游气缸的信息。因此,仿生须传感器的实验结果可以应用于水下机器人感知不同的流场信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Council IEEE Sensors Council 2025 Reviewers List IEEE Sensors Council IEEE Sensors Council
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1