Impact Force Reconstruction in Composite Structures Using Wavelet Transform and Low-Frequency Response Components

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2025-02-26 DOI:10.1109/JSEN.2025.3543362
Minghua Wang;Bowen Zhao;Yi Zhang;Di Wu;Yue Wang;Xinlin Qing;Yishou Wang
{"title":"Impact Force Reconstruction in Composite Structures Using Wavelet Transform and Low-Frequency Response Components","authors":"Minghua Wang;Bowen Zhao;Yi Zhang;Di Wu;Yue Wang;Xinlin Qing;Yishou Wang","doi":"10.1109/JSEN.2025.3543362","DOIUrl":null,"url":null,"abstract":"Aircraft composite structures are vulnerable to barely visible impact damage (BVID) caused by external impacts. Timely identification of impact forces through sparse sensor networks is critical for structural maintenance and flight safety. This article proposes an impact force reconstruction method based on wavelet transform (WT) and low-frequency response components (LRCs). The impact forces at unknown locations can be identified using the limited training data. The method extracts LRCs via WT, ensuring stable system modeling by avoiding high-frequency disturbances. A similarity-based decision strategy adaptively selects sensor combinations and LRCs for interpolation, enabling effective impact force reconstruction through sparse networks. The approach is applicable to both reinforced and flat structural areas, offering a balanced solution between monitoring cost and reconstruction capability. Validation is provided through low-velocity impact experiments on composite stiffened panels.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 7","pages":"11697-11709"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10906065/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Aircraft composite structures are vulnerable to barely visible impact damage (BVID) caused by external impacts. Timely identification of impact forces through sparse sensor networks is critical for structural maintenance and flight safety. This article proposes an impact force reconstruction method based on wavelet transform (WT) and low-frequency response components (LRCs). The impact forces at unknown locations can be identified using the limited training data. The method extracts LRCs via WT, ensuring stable system modeling by avoiding high-frequency disturbances. A similarity-based decision strategy adaptively selects sensor combinations and LRCs for interpolation, enabling effective impact force reconstruction through sparse networks. The approach is applicable to both reinforced and flat structural areas, offering a balanced solution between monitoring cost and reconstruction capability. Validation is provided through low-velocity impact experiments on composite stiffened panels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波变换和低频响应分量的复合材料结构冲击力重构
飞机复合材料结构容易受到外部冲击造成的几乎不可见的冲击损伤。通过稀疏传感器网络及时识别撞击力对结构维护和飞行安全至关重要。提出了一种基于小波变换和低频响应分量的冲击力重构方法。利用有限的训练数据可以确定未知位置的冲击力。该方法通过小波变换提取lrc,避免了高频干扰,保证了系统建模的稳定性。基于相似度的决策策略自适应选择传感器组合和lrc进行插值,通过稀疏网络实现有效的冲击力重建。该方法适用于加固和扁平结构区域,在监测成本和重建能力之间提供了一个平衡的解决方案。通过对复合材料加筋板的低速冲击试验进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Council IEEE Sensors Council 2025 Reviewers List IEEE Sensors Council IEEE Sensors Council
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1