Small Molecular Organic Hole Transport Layer for Efficient Inverted Perovskite Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2025-02-17 DOI:10.1002/solr.202500017
Shamim Ahmmed, Md. Abdul Karim, Yulu He, Siliang Cao, Md. Emrul Kayesh, Kiyoto Matsuishi, Ashraful Islam
{"title":"Small Molecular Organic Hole Transport Layer for Efficient Inverted Perovskite Solar Cells","authors":"Shamim Ahmmed,&nbsp;Md. Abdul Karim,&nbsp;Yulu He,&nbsp;Siliang Cao,&nbsp;Md. Emrul Kayesh,&nbsp;Kiyoto Matsuishi,&nbsp;Ashraful Islam","doi":"10.1002/solr.202500017","DOIUrl":null,"url":null,"abstract":"<p>To commercialize perovskite solar cells (PSCs), it is crucial to develop cost-effective, dopant-free hole transport layers (HTLs) that can be processed at low temperatures. Herein, a dopant-free small molecular material 4,4′,4′-Tris[2-naphthyl(phenyl)amino]triphenylamine (2TNATA) was utilized in inverted PSCs as a HTL. The position of the highest occupied molecular orbital energy of 2TNATA is properly aligned with the perovskite valence band maximum. Moreover, 2TNATA can be processed at lower temperatures and shows excellent thermal stability. The lead (Pb) perovskite on 2TNATA exhibited superior crystallinity and morphology compared to the perovskite on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). Furthermore, the carrier kinetics in 2TNATA-based PSCs was superior to PTAA and PEDOT:PSS-based PSCs. Consequently, an outstanding power conversion efficiency (PCE) of 20.58% was observed from the 2TNATA HTL-based 0.09 cm<sup>2</sup> PSCs, while PTAA and PEDOT:PSS HTLs-based 0.09 cm<sup>2</sup> PSCs showed PCE of 19.36% and 14.35%, respectively. Moreover, the 2TNATA HTL-based 1.0 cm<sup>2</sup> PSCs demonstrated an impressive PCE of 20.04%. The results indicate that 2TNATA might be a promising HTL for the inexpensive and efficient inverted PSCs.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To commercialize perovskite solar cells (PSCs), it is crucial to develop cost-effective, dopant-free hole transport layers (HTLs) that can be processed at low temperatures. Herein, a dopant-free small molecular material 4,4′,4′-Tris[2-naphthyl(phenyl)amino]triphenylamine (2TNATA) was utilized in inverted PSCs as a HTL. The position of the highest occupied molecular orbital energy of 2TNATA is properly aligned with the perovskite valence band maximum. Moreover, 2TNATA can be processed at lower temperatures and shows excellent thermal stability. The lead (Pb) perovskite on 2TNATA exhibited superior crystallinity and morphology compared to the perovskite on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). Furthermore, the carrier kinetics in 2TNATA-based PSCs was superior to PTAA and PEDOT:PSS-based PSCs. Consequently, an outstanding power conversion efficiency (PCE) of 20.58% was observed from the 2TNATA HTL-based 0.09 cm2 PSCs, while PTAA and PEDOT:PSS HTLs-based 0.09 cm2 PSCs showed PCE of 19.36% and 14.35%, respectively. Moreover, the 2TNATA HTL-based 1.0 cm2 PSCs demonstrated an impressive PCE of 20.04%. The results indicate that 2TNATA might be a promising HTL for the inexpensive and efficient inverted PSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效倒钙钛矿太阳能电池的小分子有机空穴传输层
要实现过氧化物太阳能电池(PSCs)的商业化,必须开发出具有成本效益、可在低温下加工的不含掺杂剂的空穴传输层(HTLs)。在本文中,一种不含掺杂剂的小分子材料 4,4′,4′-三[2-萘基(苯基)氨基]三苯胺(2TNATA)被用作倒置 PSC 的 HTL。2TNATA 的最高占据分子轨道能量位置与过氧化物价带最大值恰好一致。此外,2TNATA 可在较低温度下加工,并显示出卓越的热稳定性。与聚(3,4-亚乙二氧基噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)和聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)上的包晶相比,2TNATA 上的铅(Pb)包晶表现出更高的结晶度和形态。此外,基于 2TNATA 的 PSC 的载流子动力学优于基于 PTAA 和 PEDOT:PSS 的 PSC。因此,基于 2TNATA HTL 的 0.09 cm2 PSCs 的功率转换效率 (PCE) 达到了 20.58%,而基于 PTAA 和 PEDOT:PSS HTLs 的 0.09 cm2 PSCs 的 PCE 分别为 19.36% 和 14.35%。此外,基于 2TNATA HTL 的 1.0 平方厘米 PSC 的 PCE 高达 20.04%。这些结果表明,2TNATA 可能是一种很有前途的 HTL,可用于制造廉价高效的倒置 PSC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Issue Information Front Cover: Assessing Proton Radiation Hardness of Antimony Chalcogenide Solar Cells (Sol. RRL 1/2026) Issue Information Issue Information Heptazine-Based D–A Polymers for Photocatalytic 2,4-Dichlorophenol Degradation via Enhanced Exciton Dissociation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1