Tuning catalyst-support interactions enable steering of electrochemical CO2 reduction pathways

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-04-02 DOI:10.1126/sciadv.ado5000
Meng Wang, Yuke Li, Jinfeng Jia, Tanmay Ghosh, Ping Luo, Yu-Jhih Shen, Sibo Wang, Jiguang Zhang, Shibo Xi, Ziyu Mi, Mingsheng Zhang, Wan Ru Leow, Bernt Johannessen, Zainul Aabdin, Sung-Fu Hung, Jia Zhang, Yanwei Lum
{"title":"Tuning catalyst-support interactions enable steering of electrochemical CO2 reduction pathways","authors":"Meng Wang,&nbsp;Yuke Li,&nbsp;Jinfeng Jia,&nbsp;Tanmay Ghosh,&nbsp;Ping Luo,&nbsp;Yu-Jhih Shen,&nbsp;Sibo Wang,&nbsp;Jiguang Zhang,&nbsp;Shibo Xi,&nbsp;Ziyu Mi,&nbsp;Mingsheng Zhang,&nbsp;Wan Ru Leow,&nbsp;Bernt Johannessen,&nbsp;Zainul Aabdin,&nbsp;Sung-Fu Hung,&nbsp;Jia Zhang,&nbsp;Yanwei Lum","doi":"10.1126/sciadv.ado5000","DOIUrl":null,"url":null,"abstract":"<div >Tuning of catalyst-support interactions potentially offers a powerful means to control activity. However, rational design of the catalyst support is challenged by a lack of clear property-activity relationships. Here, we uncover how the electronegativity of a support influences reaction pathways in electrochemical CO<sub>2</sub> reduction. This was achieved by creating a model system consisting of Cu nanoparticles hosted on a series of carbon supports, each with a different heteroatom dopant of varying electronegativity. Notably, we discovered that dopants with high electronegativity reduce the electron density on Cu and induce a selectivity shift toward multicarbon (C<sub>2+</sub>) products. With this design principle, we built a composite Cu and F-doped carbon catalyst that achieves a C<sub>2+</sub> Faradaic efficiency of 82.5% at 400 mA cm<sup>−2</sup>, with stable performance for 44 hours. Using simulated flue gas, the catalyst attains a C<sub>2+</sub> FE of 27.3%, which is a factor of 5.3 times higher than a reference Cu catalyst.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 14","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado5000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado5000","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tuning of catalyst-support interactions potentially offers a powerful means to control activity. However, rational design of the catalyst support is challenged by a lack of clear property-activity relationships. Here, we uncover how the electronegativity of a support influences reaction pathways in electrochemical CO2 reduction. This was achieved by creating a model system consisting of Cu nanoparticles hosted on a series of carbon supports, each with a different heteroatom dopant of varying electronegativity. Notably, we discovered that dopants with high electronegativity reduce the electron density on Cu and induce a selectivity shift toward multicarbon (C2+) products. With this design principle, we built a composite Cu and F-doped carbon catalyst that achieves a C2+ Faradaic efficiency of 82.5% at 400 mA cm−2, with stable performance for 44 hours. Using simulated flue gas, the catalyst attains a C2+ FE of 27.3%, which is a factor of 5.3 times higher than a reference Cu catalyst.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整催化剂与支撑剂之间的相互作用可引导电化学二氧化碳还原途径
调节催化剂-载体的相互作用可能提供一种控制活性的有力手段。然而,催化剂载体的合理设计受到缺乏明确的性质-活性关系的挑战。在这里,我们揭示了载体的电负性如何影响电化学CO2还原反应途径。这是通过创建一个模型系统来实现的,该模型系统由一系列碳载体上的Cu纳米颗粒组成,每个碳载体都有不同的电负性杂原子掺杂。值得注意的是,我们发现具有高电负性的掺杂剂降低了Cu上的电子密度,并诱导了向多碳(C2+)产物的选择性转移。基于这一设计原理,我们构建了Cu和f掺杂碳复合催化剂,在400 mA cm−2下,C2+法拉第效率达到82.5%,性能稳定44小时。使用模拟烟气,催化剂的C2+ FE达到27.3%,是参考Cu催化剂的5.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Self-reconfigurable robotic fish swarms: Collective achievement of diverse locomotion and challenging aquatic tasks Efficient lead-free antimony halide light-emitting diodes with 22% external quantum efficiency via a binary host-guest architecture Genomic adaptation strategies to habitat switching in Korarchaeota GluN2B-specific NMDAR positive allosteric modulation reverses cognitive and behavioral abnormalities in Mecp2 and Disc1 transgenic mice Improved air-sea CO2 flux estimates from sailboat measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1