Hip Trajectory Error: A Framework for Designing and Evaluating Passive Prosthetic Feet for People With an Above-Knee Amputation.

IF 1.7 4区 医学 Q4 BIOPHYSICS Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-06-01 DOI:10.1115/1.4068336
Nina T Petelina, Amanda L Shorter, Amos G Winter
{"title":"Hip Trajectory Error: A Framework for Designing and Evaluating Passive Prosthetic Feet for People With an Above-Knee Amputation.","authors":"Nina T Petelina, Amanda L Shorter, Amos G Winter","doi":"10.1115/1.4068336","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel hip trajectory error (HTE) framework for designing prosthetic feet specifically for people with an above-knee amputation. Finding a high-performance prosthetic foot for people with an above-knee amputation can greatly improve mobility and prosthesis satisfaction of a user and provide a predictable interaction with the knee prosthesis. The HTE framework accounts for the lack of early and midstance knee flexion, a common gait deviation in people with above-knee amputation compared to people with a below-knee amputation and able-bodied subjects. The goal of the HTE framework is to design prosthetic feet that closely replicate able-bodied hip motion, a kinematic target that is correlated with sufficient shock absorption lost due to the lack of knee flexion during early and midstance. This paper presents a design process to optimize HTE prosthetic feet and shows that the performance of the foot is not constrained by ankle height determined by the prosthetic knee choice. In simulation, HTE feet also demonstrate a closer replication of able-bodied hip motion compared to lower leg trajectory error framework, which designs prosthetic feet specifically for people with a below-knee amputation. The HTE framework may provide the above-knee amputee population around the world with high-performance prosthetic feet designed specifically for their needs, which could improve the overall function of the prosthetic limb and user satisfaction.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4068336","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel hip trajectory error (HTE) framework for designing prosthetic feet specifically for people with an above-knee amputation. Finding a high-performance prosthetic foot for people with an above-knee amputation can greatly improve mobility and prosthesis satisfaction of a user and provide a predictable interaction with the knee prosthesis. The HTE framework accounts for the lack of early and midstance knee flexion, a common gait deviation in people with above-knee amputation compared to people with a below-knee amputation and able-bodied subjects. The goal of the HTE framework is to design prosthetic feet that closely replicate able-bodied hip motion, a kinematic target that is correlated with sufficient shock absorption lost due to the lack of knee flexion during early and midstance. This paper presents a design process to optimize HTE prosthetic feet and shows that the performance of the foot is not constrained by ankle height determined by the prosthetic knee choice. In simulation, HTE feet also demonstrate a closer replication of able-bodied hip motion compared to lower leg trajectory error framework, which designs prosthetic feet specifically for people with a below-knee amputation. The HTE framework may provide the above-knee amputee population around the world with high-performance prosthetic feet designed specifically for their needs, which could improve the overall function of the prosthetic limb and user satisfaction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
髋关节轨迹误差(HTE):设计和评估膝关节以上截肢患者被动假肢足的框架。
本文提出了一种新颖的髋部轨迹误差(HTE)框架,用于设计膝上截肢者专用的义足。为膝上截肢者设计高性能义足可大大提高使用者的活动能力和对义足的满意度,并提供与膝关节义肢之间可预测的互动。与膝下截肢者和健全人相比,膝上截肢者常见的步态偏差是早期和中期膝关节屈曲不足,而 HTE 框架可解决这一问题。HTE 框架的目标是设计出能够紧密复制健全人髋关节运动的义足,这一运动学目标与由于早期和中期站立时膝关节屈曲不足而损失的足够减震能力相关。本文介绍了优化 HTE 义足的设计过程,并表明义足的性能不受由义膝选择决定的踝关节高度的限制。在仿真中,与专门为膝下截肢者设计义足的 "下肢轨迹误差 "框架相比,HTE 义足更接近于健全人的髋关节运动。HTE 框架可为全球膝上截肢者提供专为其需求设计的高性能假肢,从而提高假肢的整体功能和用户满意度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
期刊最新文献
Integrating Imaging and Invasive Pressure Data into a Multiscale Whole-Heart Model. Theoretical Considerations for Patient-Specific Modeling Based on Observable State Variables. Stretching the Limits: From Planar-Biaxial Stress-Stretch to Arterial Pressure-Diameter. Striking a Balance With Business and Engineering Content in Biomedical Engineering Capstone Design. Investigating the Regional, Directional, and Rate-Dependent Mechanical Response of Fixed Human Brain Tissue Under Compression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1