Wenjie Li , Jian Wang , Xuwen Chen , Ahmed Mosa , Wanting Ling , Yanzheng Gao
{"title":"Interaction and sorption mechanisms of phthalate plasticizers and Cd2+ on biochar","authors":"Wenjie Li , Jian Wang , Xuwen Chen , Ahmed Mosa , Wanting Ling , Yanzheng Gao","doi":"10.1016/j.envpol.2025.126176","DOIUrl":null,"url":null,"abstract":"<div><div>Biochar exhibits significant potential for the remediation of soil contaminated with organic pollutants and heavy metals. A comprehensive understanding of the interfacial interactions and sorption mechanisms of low-hydrophobicity phthalate plasticizers, such as dimethyl phthalate (DMP) and diethyl phthalate (DEP), along with Cd<sup>2+</sup> on biochar, is essential for the effective remediation of polluted soil environments. This study systematically examines the interaction and sorption mechanisms of PAEs-Cd<sup>2+</sup> on biochar at both macro and micro levels using sorption batch experiments and molecular dynamics simulations. The sorption of contaminants by biochar occurred through a combination of physical and chemical mechanisms. The presence of coexisting pollutants reduced the sorption capacity of biochar to PAEs but had a minimal effect on Cd<sup>2+</sup> adsorption. In the co-sorption system, PAEs and Cd<sup>2+</sup> demonstrated distinct interaction behaviors. Due to its smaller molecular size and higher diffusion coefficient, Cd<sup>2+</sup> readily bonded to surface sorption sites on biochar and infiltrated its pores. Although PAE-ion complexes enhanced the sorption of pollutants by biochar, PAE molecules, and cluster structures primarily accumulated on the biochar surface, interacting with heavy metals through electrostatic forces. This interaction reduced the contribution of pore filling to pollutant sorption and weakened the desorption hysteresis capacity of biochar. The intraparticle diffusion model had similar results. Thus, a larger specific surface area and an abundant pore structure are crucial factors in improving the co-sorption capacity of biochar. This study offers novel insights into the sorption behavior of PAEs and Cd<sup>2+</sup> on biochar within organic-inorganic composite pollution.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"373 ","pages":"Article 126176"},"PeriodicalIF":7.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125005494","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Biochar exhibits significant potential for the remediation of soil contaminated with organic pollutants and heavy metals. A comprehensive understanding of the interfacial interactions and sorption mechanisms of low-hydrophobicity phthalate plasticizers, such as dimethyl phthalate (DMP) and diethyl phthalate (DEP), along with Cd2+ on biochar, is essential for the effective remediation of polluted soil environments. This study systematically examines the interaction and sorption mechanisms of PAEs-Cd2+ on biochar at both macro and micro levels using sorption batch experiments and molecular dynamics simulations. The sorption of contaminants by biochar occurred through a combination of physical and chemical mechanisms. The presence of coexisting pollutants reduced the sorption capacity of biochar to PAEs but had a minimal effect on Cd2+ adsorption. In the co-sorption system, PAEs and Cd2+ demonstrated distinct interaction behaviors. Due to its smaller molecular size and higher diffusion coefficient, Cd2+ readily bonded to surface sorption sites on biochar and infiltrated its pores. Although PAE-ion complexes enhanced the sorption of pollutants by biochar, PAE molecules, and cluster structures primarily accumulated on the biochar surface, interacting with heavy metals through electrostatic forces. This interaction reduced the contribution of pore filling to pollutant sorption and weakened the desorption hysteresis capacity of biochar. The intraparticle diffusion model had similar results. Thus, a larger specific surface area and an abundant pore structure are crucial factors in improving the co-sorption capacity of biochar. This study offers novel insights into the sorption behavior of PAEs and Cd2+ on biochar within organic-inorganic composite pollution.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.