Engineering Chiral Confinement Environment in Polyoxometalate Intercalated Graphene Oxide Sensor for Electrochemical Enantioselective Recognition

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-04-03 DOI:10.1002/smll.202410895
Jie Sun, Guicong Hu, Luran Jiang, Wen Chang, Sai An, Bo Qi, Yu-Fei Song
{"title":"Engineering Chiral Confinement Environment in Polyoxometalate Intercalated Graphene Oxide Sensor for Electrochemical Enantioselective Recognition","authors":"Jie Sun,&nbsp;Guicong Hu,&nbsp;Luran Jiang,&nbsp;Wen Chang,&nbsp;Sai An,&nbsp;Bo Qi,&nbsp;Yu-Fei Song","doi":"10.1002/smll.202410895","DOIUrl":null,"url":null,"abstract":"<p>The electrochemistry recognition of enantiomeric chiral molecules holds great significance for the pharmaceutical industry and scientific research. However, enhancing sensitivity and selectivity simultaneously, and elucidating chiral recognition mechanism, are two primary challenges. Here, an electrochemical chiral sensor L-C<sub>4</sub>-PMoV/GO is developed by confining chiral imidazole cations (L-C<sub>4</sub>) and [PMo<sub>10</sub>V<sub>2</sub>]<sup>5−</sup> (PMoV) signal anions within the interlayer of graphene oxide (GO). The L-C<sub>4</sub>-PMoV/GO is highly sensitive to recognition towards the chiral drug Levodopa (L-DOPA), which exhibits 16 times higher than the L-C<sub>4</sub>/GO. In addition, the enantioselectivity of Δ<i>S</i> = 19.92 is achieved. Mechanism studies suggest that the chiral confinement effect plays a crucial role in the synergism between the signal site PMoV and the enantioselectivity L-C<sub>4</sub>. In the chiral-confined microenvironment, the chiral induction from L-C<sub>4</sub> to PMoV is facilitated, which results in the distortion of Mo (V)─O bonds. The hydrogen-bonding networks among the L-C<sub>4</sub>, Mo (V)─O, and DOPA generate the adsorption energy difference between the L/D-DOPA, as revealed by the in situ Raman spectroscopy and theoretical calculation. Compared to the conventional techniques, the electrochemical sensor shows comparable enantiomer excess (ee) value determination, low limits of detection (LOD) (6.7 n<span>m</span> for L-DOPA, 50.6 n<span>m</span> for D-DOPA), and portability, enabling practical chiral recognition.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 21","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410895","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemistry recognition of enantiomeric chiral molecules holds great significance for the pharmaceutical industry and scientific research. However, enhancing sensitivity and selectivity simultaneously, and elucidating chiral recognition mechanism, are two primary challenges. Here, an electrochemical chiral sensor L-C4-PMoV/GO is developed by confining chiral imidazole cations (L-C4) and [PMo10V2]5− (PMoV) signal anions within the interlayer of graphene oxide (GO). The L-C4-PMoV/GO is highly sensitive to recognition towards the chiral drug Levodopa (L-DOPA), which exhibits 16 times higher than the L-C4/GO. In addition, the enantioselectivity of ΔS = 19.92 is achieved. Mechanism studies suggest that the chiral confinement effect plays a crucial role in the synergism between the signal site PMoV and the enantioselectivity L-C4. In the chiral-confined microenvironment, the chiral induction from L-C4 to PMoV is facilitated, which results in the distortion of Mo (V)─O bonds. The hydrogen-bonding networks among the L-C4, Mo (V)─O, and DOPA generate the adsorption energy difference between the L/D-DOPA, as revealed by the in situ Raman spectroscopy and theoretical calculation. Compared to the conventional techniques, the electrochemical sensor shows comparable enantiomer excess (ee) value determination, low limits of detection (LOD) (6.7 nm for L-DOPA, 50.6 nm for D-DOPA), and portability, enabling practical chiral recognition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在聚氧化金属盐夹杂的氧化石墨烯传感器中设计手性封闭环境,实现电化学对映选择性识别
对映体手性分子的电化学识别对医药工业和科学研究具有重要意义。然而,同时提高灵敏度和选择性,阐明手性识别机制是两个主要的挑战。本文通过将手性咪唑阳离子(L-C4)和[PMo10V2]5−(PMoV)信号阴离子限制在氧化石墨烯(GO)的中间层内,开发了电化学手性传感器L-C4-PMoV/GO。L-C4- pmov /GO对手性药物左旋多巴(L-DOPA)的识别高度敏感,比L-C4/GO高16倍。对映体选择性达到ΔS = 19.92。机制研究表明,手性约束效应在信号位点PMoV与对映体选择性L-C4之间的协同作用中起着至关重要的作用。在手性受限的微环境中,L-C4向PMoV的手性诱导促进了Mo (V)─O键的畸变。原位拉曼光谱和理论计算表明,L- c4、Mo (V)─O和DOPA之间的氢键网络产生了L/D-DOPA之间的吸附能差。与传统技术相比,电化学传感器具有相当的对映体过量(ee)值测定,低检测限(LOD) (L-DOPA 6.7 nm, D-DOPA 50.6 nm)和便携性,能够实现实际的手性识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Polyoxometalate Induced Bismuth Sulfide Sub-1 nm Nanowires as Efficient Photocathodes in Li-CO2 Batteries Acupuncture Mechanics, Stimulation, and Cellular Serotonin Detection by a Magneto-Responsive Nanomesh Sensor Low-Temperature Photothermal Antibacterial Activity and Wound Healing Promotion Mediated by Controlled Nitric Oxide Release Dendrite-Free Zn Anodes via Synergistic Cosolvent-Mediated Solvation Regulation and Polyhydroxy-Induced Interface Stabilization High Entropy Layered Cathode With Single Grain Morphology for High-Performance Sodium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1