Electrochemical Lattice Engineering of Bismuthene for Selective Glycine Synthesis

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-04-03 DOI:10.1002/adma.202500843
Sijia Liu, Guanzheng Wu, Jiadi Jiang, Yidong Yang, Aijun Du, Wuyong Zhang, Xin Mao, Lei Dai, Qing Qin
{"title":"Electrochemical Lattice Engineering of Bismuthene for Selective Glycine Synthesis","authors":"Sijia Liu,&nbsp;Guanzheng Wu,&nbsp;Jiadi Jiang,&nbsp;Yidong Yang,&nbsp;Aijun Du,&nbsp;Wuyong Zhang,&nbsp;Xin Mao,&nbsp;Lei Dai,&nbsp;Qing Qin","doi":"10.1002/adma.202500843","DOIUrl":null,"url":null,"abstract":"<p>Glycine plays a crucial role in various industrial and daily applications. However, traditional synthesis methods are often associated with high toxicity, energy intensity, and inefficiency. This study introduces an efficient and eco-friendly method for synthesizing glycine via the reductive coupling of oxalic acid and nitrate using a Bi metal catalyst, enhanced by lattice strain from Bi and oxide composites undergoing electrochemical transformation. At an applied potential of −0.76 V versus the reversible hydrogen electrode (RHE), the Bi catalyst achieves an impressive glycine Faradaic efficiency (FE) of 79.1%, yielding a record concentration of 0.17 <span>m</span>, substantially higher than conventional Bi-based systems. Furthermore, the introduction of glycolaldehyde and hydroxylamine as reactants raise the glycine FE to 91.3% with a production rate of 2433.3 µmol h<sup>−1</sup> under identical conditions. Electrochemical analysis and theoretical calculations demonstrate that lattice expansion notably boosts glycine synthesis by facilitating NH<sub>2</sub>OH formation and promoting the efficient reduction of oxime intermediates. These results underscore the significance of lattice engineering in enhancing active site performance and accelerating reaction kinetics, offering a sustainable and efficient alternative to traditional glycine synthesis methods.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 21","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202500843","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Glycine plays a crucial role in various industrial and daily applications. However, traditional synthesis methods are often associated with high toxicity, energy intensity, and inefficiency. This study introduces an efficient and eco-friendly method for synthesizing glycine via the reductive coupling of oxalic acid and nitrate using a Bi metal catalyst, enhanced by lattice strain from Bi and oxide composites undergoing electrochemical transformation. At an applied potential of −0.76 V versus the reversible hydrogen electrode (RHE), the Bi catalyst achieves an impressive glycine Faradaic efficiency (FE) of 79.1%, yielding a record concentration of 0.17 m, substantially higher than conventional Bi-based systems. Furthermore, the introduction of glycolaldehyde and hydroxylamine as reactants raise the glycine FE to 91.3% with a production rate of 2433.3 µmol h−1 under identical conditions. Electrochemical analysis and theoretical calculations demonstrate that lattice expansion notably boosts glycine synthesis by facilitating NH2OH formation and promoting the efficient reduction of oxime intermediates. These results underscore the significance of lattice engineering in enhancing active site performance and accelerating reaction kinetics, offering a sustainable and efficient alternative to traditional glycine synthesis methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择性甘氨酸合成中铋的电化学点阵工程
甘氨酸在各种工业和日常应用中起着至关重要的作用。然而,传统的合成方法往往与高毒性、高能量强度和低效率有关。本研究介绍了一种高效、环保的草酸和硝酸盐还原偶联合成甘氨酸的方法,该方法使用铋金属催化剂,由铋和氧化物复合材料进行电化学转化的晶格应变增强。与可逆氢电极(RHE)相比,在−0.76 V的施加电位下,Bi催化剂获得了令人印象深刻的79.1%的甘氨酸法拉第效率(FE),产生0.17 m的创纪录浓度,大大高于传统的Bi基系统。此外,在相同条件下,引入乙醇醛和羟胺作为反应物,将甘氨酸FE提高到91.3%,产率为2433.3µmol h−1。电化学分析和理论计算表明,晶格扩张通过促进NH2OH的形成和促进肟类中间体的高效还原,显著促进了甘氨酸的合成。这些结果强调了晶格工程在提高活性位点性能和加速反应动力学方面的重要性,为传统的甘氨酸合成方法提供了一种可持续和高效的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Commercial bismuth
麦克林
Ethanol
麦克林
Phosphate buffered solution
麦克林
8-quinolinol
麦克林
Trichloroacetic acid
麦克林
Ammonium chloride
麦克林
Sulfuric acid
麦克林
Sodium hypochlorite solution
麦克林
Sodium citrate
麦克林
Salicylic acid
麦克林
Sodium hydroxide
麦克林
Glycolic acid
麦克林
Glyoxylic acid
麦克林
Glycine
麦克林
N-(1-naphthyl)-ethylenediamine dihydrochloride
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Issue Information A Widely Tunable Spin-Orbit Torque Device through the Silicon Compatible CMOS Platform (Adv. Mater. 4/2026) Magnetic Milli-Spinner for Robotic Endovascular Surgery (Adv. Mater. 4/2026) Photothermal Manipulation of Plasmonic/Polymer Composite Nanoshell Arrays: Enhancing Lattice Order and Tunable Structural Color Constructing Interfacial Prestress to Achieve Homogeneously Strained Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1