Evaluating metabolic rate and specific dynamic action in recirculating aquaculture systems: Influence of stocking density and feeding level in barramundi (Lates calcarifer)

IF 3.9 1区 农林科学 Q1 FISHERIES Aquaculture Pub Date : 2025-03-29 DOI:10.1016/j.aquaculture.2025.742503
Le Boucher Richard, Chung Weiqiang, Ng Jessalin, Tan Shun En Lydia, Lee Co Sin
{"title":"Evaluating metabolic rate and specific dynamic action in recirculating aquaculture systems: Influence of stocking density and feeding level in barramundi (Lates calcarifer)","authors":"Le Boucher Richard,&nbsp;Chung Weiqiang,&nbsp;Ng Jessalin,&nbsp;Tan Shun En Lydia,&nbsp;Lee Co Sin","doi":"10.1016/j.aquaculture.2025.742503","DOIUrl":null,"url":null,"abstract":"<div><div>Bioenergetic modelling plays a crucial role in aquaculture, optimizing nutrition, growth prediction, husbandry, and genetic management. The estimation of animal metabolic rate (MR), traditionally conducted in closed respirometric chambers, is a fundamental aspect of these models. This study presents a novel method for directly measuring fish MR, routine metabolic rate (RMR), postprandial peak metabolic rate (PMR), and specific dynamic action (SDA) parameters including SDA coefficient (C<sub>SDA</sub>) within a recirculating aquaculture system (RAS). Additionally, the study evaluates the effects of fish size, stocking density, and feeding levels on these metabolic metrics. Using 3510 barramundi (<em>Lates calcarifer</em>, 51.2 g) housed in 27 RAS tanks (1 m<sup>3</sup>, 30.0 °C seawater), dissolved oxygen levels every 10 min for 56 days to model metabolic parameters. Fish MR ranged from 14.5 to 112.8 mg O<sub>2</sub> fish<sup>−1</sup> h<sup>−1</sup>, following a daily sinusoidal pattern. PMR fit a power model (PMR = 2.18 × body weight [BW]<sup>0.71</sup>, R<sup>2</sup> = 0.70, <em>n</em> = 810), while RMR followed an exponential model (RMR = 6.31 × exp. (0.01 × BW), R<sup>2</sup> = 0.87, <em>n</em> = 148). SDA parameters remained largely unaffected by stocking density or feeding rate (<em>P</em> &gt; 0.05), with time-to-peak = 8.8–10.7 h, total SDA duration = 22.1–22.6 h, SDA factual scope = 2.0–2.9, and C<sub>SDA</sub> = 14.8–16.4 %. Although this RAS-based methodology does not match the precision of closed-chamber respirometry, the results closely align with previous findings. This approach therefore provides a scalable tool for phenotyping metabolic variations in commercial aquaculture.</div></div>","PeriodicalId":8375,"journal":{"name":"Aquaculture","volume":"604 ","pages":"Article 742503"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0044848625003898","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Bioenergetic modelling plays a crucial role in aquaculture, optimizing nutrition, growth prediction, husbandry, and genetic management. The estimation of animal metabolic rate (MR), traditionally conducted in closed respirometric chambers, is a fundamental aspect of these models. This study presents a novel method for directly measuring fish MR, routine metabolic rate (RMR), postprandial peak metabolic rate (PMR), and specific dynamic action (SDA) parameters including SDA coefficient (CSDA) within a recirculating aquaculture system (RAS). Additionally, the study evaluates the effects of fish size, stocking density, and feeding levels on these metabolic metrics. Using 3510 barramundi (Lates calcarifer, 51.2 g) housed in 27 RAS tanks (1 m3, 30.0 °C seawater), dissolved oxygen levels every 10 min for 56 days to model metabolic parameters. Fish MR ranged from 14.5 to 112.8 mg O2 fish−1 h−1, following a daily sinusoidal pattern. PMR fit a power model (PMR = 2.18 × body weight [BW]0.71, R2 = 0.70, n = 810), while RMR followed an exponential model (RMR = 6.31 × exp. (0.01 × BW), R2 = 0.87, n = 148). SDA parameters remained largely unaffected by stocking density or feeding rate (P > 0.05), with time-to-peak = 8.8–10.7 h, total SDA duration = 22.1–22.6 h, SDA factual scope = 2.0–2.9, and CSDA = 14.8–16.4 %. Although this RAS-based methodology does not match the precision of closed-chamber respirometry, the results closely align with previous findings. This approach therefore provides a scalable tool for phenotyping metabolic variations in commercial aquaculture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
循环养殖系统中代谢率和特定动态作用的评价:放养密度和摄食水平对梭鲈的影响
生物能量建模在水产养殖、优化营养、生长预测、畜牧业和遗传管理方面发挥着至关重要的作用。动物代谢率(MR)的估计,传统上是在封闭的呼吸室中进行的,是这些模型的一个基本方面。本研究提出了一种在循循环养殖系统(RAS)中直接测量鱼类MR、常规代谢率(RMR)、餐后峰值代谢率(PMR)和特定动态作用(SDA)参数(包括SDA系数(CSDA))的新方法。此外,该研究还评估了鱼类大小、放养密度和摄食水平对这些代谢指标的影响。将3510只barramundi (Lates calcarifer, 51.2 g)放在27个RAS水箱中(1 m3, 30.0 °C海水),每10 min溶解氧水平56 天,模拟代谢参数。鱼的MR范围为14.5至112.8 mg O2 Fish - 1 h - 1,遵循每日正弦模式。PMR适应能力模型(PMR = 2.18 × 体重(BW) 0.71, R2 = 0.70,n = 810),而RMR跟着一个指数模型(RMR = 6.31 × exp。(0.01 × BW), R2 = 0.87,n = 148)。SDA参数仍主要由放养密度影响或喂养率(P 祝辞 0.05),与time-to-peak = 8.8 - -10.7 h,总SDA = 持续时间22.1 - -22.6 h, SDA事实 = 范围2.0 - -2.9,CSDA = 14.8 - -16.4 %。虽然这种基于ras的方法与封闭室呼吸法的精度不匹配,但结果与先前的发现密切一致。因此,这种方法为商业水产养殖中表型代谢变异提供了一种可扩展的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture
Aquaculture 农林科学-海洋与淡水生物学
CiteScore
8.60
自引率
17.80%
发文量
1246
审稿时长
56 days
期刊介绍: Aquaculture is an international journal for the exploration, improvement and management of all freshwater and marine food resources. It publishes novel and innovative research of world-wide interest on farming of aquatic organisms, which includes finfish, mollusks, crustaceans and aquatic plants for human consumption. Research on ornamentals is not a focus of the Journal. Aquaculture only publishes papers with a clear relevance to improving aquaculture practices or a potential application.
期刊最新文献
Development of a pressure-induced triploidy protocol and its effects on growth performance and fertility in tambaqui Colossoma macropomum (Cuvier, 1816) Integrating GWAS and genomic selection with SNP and SV markers for enhanced prediction of complex traits in common carp Development of a recombinase polymerase amplification based rapid visual detection assay for acute hepatopancreatic necrosis disease Marker genes identification and functional characterization of thrombocytes in turbot (Scophthalmus maximus) Recovering mussel spat normally lost during seeding onto farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1