{"title":"The impact of vortex generator positioning and heated surface orientation on thermal performance and flow dynamics in asymmetrically heated duct","authors":"Hüseyin Zahit Demirağ","doi":"10.1016/j.csite.2025.106075","DOIUrl":null,"url":null,"abstract":"<div><div>This computational investigation primarily explores the impact of three factors on thermo-hydraulic performance: the dimensionless distance ratio (<em>z/L</em> = −0.1 to 0.5), Heated Surface [HS] orientation (HS-Up, HS-Down), and Delta Winglet [DW] positioning (DW-PU, DW-PD). The numerical model applies steady-state RANS and energy equations with the (SST) k-<em>ω</em> turbulence model, assuming incompressibility, constant thermophysical properties, and ignoring radiation and buoyancy effects. A comprehensive analysis of resulting data reveals that the DW-PD configuration yields lower Darcy friction factors across all <em>z/L</em> ratios compared to DW-PU layout, exhibiting reductions of 6.35 % at <em>z/L</em> = −0.1 and 3.49 % at <em>z/L</em> = 0.5. The DW-PD setup with HS-Down demonstrates the best thermal performance among all configurations and dimensionless distance ratios (except <em>z/L</em> = −0.1). Moreover, the optimum dimensionless distance ratios for achieving the highest Nusselt numbers are determined as <em>z/L</em> = 0.1 for HS-Up and <em>z/L</em> = 0.2 for HS-Down under both configurations. The computational data indicates that the difference between the maximum and minimum Thermal Enhancement Factor [TEF] is approximately 23.78 % and the highest TEF = 1.25, is achieved with the utilization of DW-PD at <em>z/L</em> = 0.2 for HS-Down at Re = 5000. This study underscores the critical significance of examining all these parameters to attain the highest thermal performance.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"70 ","pages":"Article 106075"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25003351","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This computational investigation primarily explores the impact of three factors on thermo-hydraulic performance: the dimensionless distance ratio (z/L = −0.1 to 0.5), Heated Surface [HS] orientation (HS-Up, HS-Down), and Delta Winglet [DW] positioning (DW-PU, DW-PD). The numerical model applies steady-state RANS and energy equations with the (SST) k-ω turbulence model, assuming incompressibility, constant thermophysical properties, and ignoring radiation and buoyancy effects. A comprehensive analysis of resulting data reveals that the DW-PD configuration yields lower Darcy friction factors across all z/L ratios compared to DW-PU layout, exhibiting reductions of 6.35 % at z/L = −0.1 and 3.49 % at z/L = 0.5. The DW-PD setup with HS-Down demonstrates the best thermal performance among all configurations and dimensionless distance ratios (except z/L = −0.1). Moreover, the optimum dimensionless distance ratios for achieving the highest Nusselt numbers are determined as z/L = 0.1 for HS-Up and z/L = 0.2 for HS-Down under both configurations. The computational data indicates that the difference between the maximum and minimum Thermal Enhancement Factor [TEF] is approximately 23.78 % and the highest TEF = 1.25, is achieved with the utilization of DW-PD at z/L = 0.2 for HS-Down at Re = 5000. This study underscores the critical significance of examining all these parameters to attain the highest thermal performance.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.