Laser directed energy deposition of thin-walled GH4099 superalloy with gradient microstructure and mechanical properties

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: A Pub Date : 2025-04-01 DOI:10.1016/j.msea.2025.148283
Xinyu Zhang , Shiyu Wang , Yongfeng Liang , Yingchao Guo , Zhichao Guo , Feng Yi , Junpin Lin
{"title":"Laser directed energy deposition of thin-walled GH4099 superalloy with gradient microstructure and mechanical properties","authors":"Xinyu Zhang ,&nbsp;Shiyu Wang ,&nbsp;Yongfeng Liang ,&nbsp;Yingchao Guo ,&nbsp;Zhichao Guo ,&nbsp;Feng Yi ,&nbsp;Junpin Lin","doi":"10.1016/j.msea.2025.148283","DOIUrl":null,"url":null,"abstract":"<div><div>The present study used laser-directed energy deposition(L-DED) to manufacture a GH4099 superalloy thin-walled structure with a gradient microstructure and mechanical properties. A systematic analysis examined the heat-driven changes in microstructure and both microscopic and macroscopic mechanical properties along the build direction. Columnar crystal epitaxial growth increased from bottom to top, while heat flow transformed intergranular impurities into tiny columnar crystals. Non-equilibrium solidification dendrites introduced fluctuations in elastic modulus and hardness. The substantial increase in microscopic mechanical properties observed with height primarily stemmed from variations in γ' characteristics with respect to height. The increase in grain size and precipitate size leads to a gradual decrease in the gradient of macroscopic mechanical properties from bottom to top. Intragranular carbides are primarily attributed to the γ/γ' interface and regions near dislocations, whereas intergranular carbides grow along specific orientations and are pinned at grain boundaries.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"933 ","pages":"Article 148283"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325005076","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study used laser-directed energy deposition(L-DED) to manufacture a GH4099 superalloy thin-walled structure with a gradient microstructure and mechanical properties. A systematic analysis examined the heat-driven changes in microstructure and both microscopic and macroscopic mechanical properties along the build direction. Columnar crystal epitaxial growth increased from bottom to top, while heat flow transformed intergranular impurities into tiny columnar crystals. Non-equilibrium solidification dendrites introduced fluctuations in elastic modulus and hardness. The substantial increase in microscopic mechanical properties observed with height primarily stemmed from variations in γ' characteristics with respect to height. The increase in grain size and precipitate size leads to a gradual decrease in the gradient of macroscopic mechanical properties from bottom to top. Intragranular carbides are primarily attributed to the γ/γ' interface and regions near dislocations, whereas intergranular carbides grow along specific orientations and are pinned at grain boundaries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有梯度组织和力学性能的GH4099薄壁高温合金的激光定向能沉积
本研究采用激光定向能沉积(L-DED)技术制备了具有梯度组织和力学性能的GH4099高温合金薄壁结构。系统分析了热驱动下的微观组织和宏观、微观力学性能沿构建方向的变化。柱状晶的外延由下向上增大,而热流将晶间杂质转化为微小的柱状晶。非平衡凝固枝晶引入弹性模量和硬度的波动。观察到的微观力学性能随高度的显著增加主要源于γ′特征随高度的变化。晶粒尺寸和析出相尺寸的增大导致宏观力学性能的梯度从下向上逐渐减小。晶内碳化物主要来源于γ/γ′界面和位错附近的区域,而晶间碳化物则沿特定的方向生长,并固定在晶界上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
期刊最新文献
Design and synergistic strengthening mechanisms of high strength-toughness Fe-Al-Ta alloy with multi-scale architecture Enabling superior impact toughness of low-density δ-ferrite steel by dispersing ultra-fine spheroidized carbides in the ferrite/carbide composite lamellae Duplex microstructure enhanced mechanical property and underlined mechanism in Fe35MnxAl0.1C low-density steel Electric current-driven microstructural recovery and crack resistance enhancement in Ni-based superalloy Inconel 718 Tuning mechanical anisotropy in laser powder bed fusion via a rotational remelting scan strategy: A case study in niobium-based alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1